Issue
Korean Journal of Chemical Engineering,
Vol.36, No.1, 92-100, 2019
Hierarchical Al2O3/SiO2 fiber membrane with reversible wettability for on-demand oil/water separation
This work presents an effective method of fabricating hierarchical Al2O3/SiO2 fiber membrane with reversible wettability for on-demand oil/water separation. In this strategy, the superhydrophilic/underwater superoleophobic surfaces are fabricated by in-situ growing hierarchical Al2O3 nanosheets on the SiO2 fiber surfaces that can be used as water-removing materials for oil/water separation. Then, the superhydrophobic/oleophilic surfaces are obtained by surface chemical modification with sodium laurate, which can be used as oil-removing materials for oil/water separation. Interestingly, the reversible wettability transformation of Al2O3/SiO2 fiber membrane can be controlled by the annealing and modification treatment alternately. The as-prepared Al2O3/SiO2 fiber membrane, combining the advantages and overcoming disadvantages of two modes, achieves reversible wettability transitions and on-demand oil/water separation. In addition, the Al2O3/SiO2 fiber membrane shows a significant chemical stability and super-wettability even after five annealing and surface modification cycles, indicating its excellent durability. The separation efficiency in both oil-removing mode and water-removing mode is over 95% for various oil/water mixtures through multiple recycle separation processes. This work not only provides a simple and cost-effective method to fabricate separation membrane with reversible wettability, but also shows great potential in remediation of large-scale oil spillage or organic solvents discharge at different environmental conditions.
[References]
  1. Yuan DS, Zhang T, Guo Q, Qiu FX, Yang DY, Ou ZP, Chem. Eng. J., 327, 539, 2017
  2. Yue XJ, Zhang T, Yang DY, Qiu FX, Li ZD, Ind. Eng. Chem. Res., 57(31), 10439, 2018
  3. Yue X, Zhang T, Yang D, Qiu F, L Zi, J. Clean Prod., 199, 411, 2018
  4. Yue XJ, Zhang T, Yang DY, Qiu FX, Rong J, Xu JC, Fang JS, Chem. Eng. J., 309, 522, 2017
  5. Zhang T, Kong LY, Dai YT, Yue XJ, Rong J, Qiu FX, Pan JM, Chem. Eng. J., 309, 7, 2017
  6. Liu SC, Pan JM, Zhu HJ, Pan GQ, Qiu FX, Meng MJ, Yao JT, Yuan D, Chem. Eng. J., 290, 220, 2016
  7. Yue XJ, Li JX, Zhang T, Qiu FX, Yang DY, Xue MW, Chem. Eng. J., 328, 117, 2017
  8. Zhang F, Zhang WB, Shi Z, Wang D, Jin J, Jiang L, Adv. Mater., 25(30), 4192, 2013
  9. Xue Z, Cao Y, Liu N, Feng L, Jiang L, J. Mater. Chem. A, 2, 2445, 2014
  10. Liu H, Raza A, Aili A, Lu J, AlGhaferi A, Zhang T, Sci. Rep., 6, 25414, 2016
  11. Jo S, Kim Y, Korean J. Chem. Eng., 33(11), 3203, 2016
  12. Wen Q, Di J, Jiang L, Yu J, Xu R, Chem. Sci., 4, 591, 2013
  13. Chen PC, Xu ZK, Sci. Rep., 3, 2776, 2013
  14. Yue X, Zhang T, Yang D, Qiu F, Li Z, Cellulose, 25, 5951, 2018
  15. Che H, Huo M, Peng L, Fang T, Liu N, Feng L, Wei Y, Yuan J, Angew. Chem.-Int. Edit., 54, 8934, 2015
  16. Du X, You SJ, Wang XH, Wang QR, Lu JD, Chem. Eng. J., 313, 398, 2017
  17. Liu Y, Zhan B, Zhang KT, Kaya C, Stegmaier T, Han ZW, Ren LQ, Chem. Eng. J., 331, 278, 2018
  18. Gu J, Xiao P, Chen J, Zhang J, Huang Y, Chen T, ACS Appl. Mater. Interfaces, 6, 16204, 2014
  19. Yang HC, Hou J, Chen V, Xu ZK, Angew. Chem.-Int. Edit., 55, 13398, 2016
  20. Ma WJ, Samal SK, Liu ZC, Xiong RH, De Smedt SC, Bhushan B, Zhang QL, Huang CB, J. Membr. Sci., 537, 128, 2017
  21. Wagner N, Theato P, Polymer, 55(16), 3436, 2014
  22. Xiang YH, Wang YZ, Lin HB, Wang Y, Xiong Z, Liu F, React. Funct. Polym., 97, 86, 2015
  23. Kota AK, Kwon G, Choi W, Mabry JM, Tuteja A, Nat. Commun., 3, 1025, 2012
  24. Lu C, Urban MW, Prog. Polym. Sci, 78, 24, 2018
  25. Liu CT, Liu YL, J. Mater. Chem. A, 4, 13543, 2016
  26. Miao YE, Wang R, Chen D, Liu Z, Liu T, ACS Appl. Mater. Interfaces, 4, 5353, 2012
  27. Gao S, Huang J, Li S, Liu H, Li F, Li Y, Chen G, Lai Y, Mater. Des., 128, 1, 2017
  28. Yue X, Zhang T, Yang D, Qiu F, Zhu Y, Fang J, J. Ind. Eng. Chem., 61, 188, 2018