Issue
Korean Journal of Chemical Engineering,
Vol.36, No.1, 71-76, 2019
Continuous production of bioethanol using microalgal sugars extracted from Nannochloropsis gaditana
We developed a continuous production process of bioethanol from sugars extracted from Nannochloropsis gaditana. To improve algal sugar production, the reaction conditions of acid-thermal hydrolysis were investigated based on five different types of acid and their concentrations (1-4%), and the loading ratio of solid/liquid (S/L). As a result, the maximum hydrolysis efficiency (92.82%) was achieved under 2% hydrochloric acid with 100 g/L biomass loading at 121 °C for 15 min. The hydrolysates obtained from N. gaditana were applied to the main medium of Bretthanomyces custersii H1-603 for bioethanol production. The maximum bioethanol production and yield by the microalgal hydrolysate were found to be 4.84 g/L and 0.37 g/g, respectively. In addition, the cell immobilization of B. custersii was carried out using sodium alginate, and the effect of the volume ratio of cell/sodium alginate on bioethanol productivity was investigated in a batch system. The optimal ratio was determined as 2 (v/v), and the immobilized cell beads were applied in the continuous stirred tank reactor (CSTR). Continuous ethanol production was performed using both free cells and immobilized cells at 1 L CSTR. In both groups, the maximum bioethanol production and yield were achieved at dilution rate of 0.04 h-1 (3.93 g/L and 0.3 g/g by free cell, and 3.68 g/L and 0.28 g/g by immobilized cell, respectively).
[References]
  1. Neri E, Passarini F, Cespi D, Zoffoli F, Vassura I, J. Clean Prod., 171, 1006, 2018
  2. Phusunti N, Phetwarotai W, Tekasakul S, Korean J. Chem. Eng., 35(2), 503, 2018
  3. Yoo HY, Pradeep GC, Lee SK, Park DH, Cho SS, Choi YH, Kim SW, Biotechnol. J., 10, 1894, 2015
  4. Yang X, Choi HS, Park C, Kim SW, Renew. Sust. Energ. Rev., 49, 335, 2015
  5. Lee JH, Kim DS, Yang JH, Chun Y, Yoo HY, Han SO, Lee J, Park C, Kim SW, Bioresour. Technol., 264, 387, 2018
  6. Kidanu WG, Trang PT, Yoon HH, Biotechnol. Bioprocess Eng., 22, 612, 2017
  7. Singh J, Gu S, Renew. Sust. Energ. Rev., 14, 2596, 2010
  8. Cheng J, Yang Z, Zhou J, Cen K, Korean J. Chem. Eng., 35(2), 498, 2018
  9. Daroch M, Geng S, Wang GY, Appl. Energy, 102, 1371, 2013
  10. Zhou N, Zhang YM, Gong XW, Wang QH, Ma YH, Bioresour. Technol., 118, 512, 2012
  11. Scholz MJ, Weiss TL, Jinkerson RE, Jing J, Roth R, Goodenough U, Posewitz MC, Gerken HG, Eukaryot. Cell (2014),DOI:10.1128/EC.00183-14.
  12. Monlau F, Sambusiti C, Barakat A, Quemeneur M, Trably E, Steyer JP, Carrere H, Biotechnol. Adv., 32, 934, 2014
  13. Sanchez-Machado DI, Lopez-Cervantes J, Lopez-Hernandez J, Paseiro-Losada P, Food Chem., 85, 439, 2004
  14. Lim HG, Seo SW, Jung GY, Bioresour. Technol., 135, 564, 2013
  15. Holden HM, Rayment I, Thoden JB, J. Biol. Chem., 278, 43885, 2003
  16. Rabelo SC, Maciel R, Costa AC, Appl. Biochem. Biotechnol., 153(1-2), 139, 2009
  17. Miranda JR, Passarinho PC, Gouveia L, Bioresour. Technol., 104, 342, 2012
  18. Lee JH, Kim DS, Yang JH, Yoo HY, Han SO, Lee J, Park C, Kim SW, J. Clean Prod., 187, 903, 2018
  19. Yoo HY, Yang X, Kim DS, Lee SK, Lotrakul P, Prasongsuk S, Punnapayak H, Kim SW, Biotechnol. Bioprocess Eng., 21, 733, 2016
  20. Yoo HY, Lee JH, Kim DS, Lee JH, Lee SK, Lee SJ, Park C, Kim SW, J. Ind. Eng. Chem., 51, 303, 2017
  21. Montipo S, Ballesteros I, Fontana RC, Liu S, Martins AF, Ballesteros M, Camassola M, Bioresour. Technol., 249, 1017, 2018
  22. Ho SH, Huang SW, Chen CY, Hasunuma T, Kondo A, Chang JS, Bioresour. Technol., 135, 191, 2013
  23. Wang H, Ji CL, Bi SL, Zhou P, Chen L, Liu TZ, Bioresour. Technol., 172, 169, 2014
  24. Park JH, Hong JY, Jang HC, Oh SG, Kim SH, Yoon JJ, Kim YJ, Bioresour. Technol., 108, 83, 2012
  25. Lee KH, Choi IS, Kim YG, Yang DJ, Bae HJ, Bioresour. Technol., 102(17), 8191, 2011
  26. Kourkoutas Y, Bekatorou A, Banat IM, Marchant R, Koutinas AA, Food Microbiol., 21, 377, 2004
  27. Ahmad ZS, Munaim MSA, Food Biosci., 21, 27, 2018