Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2138-2144, 2018
Scalable synthesis of carbon-embedded ordered macroporous titania spheres with structural colors
Carbon-embedded ordered macroporous titania (C-MAC TiO2) spheres are prepared in solution by the cooperative self-assembly of polymer beads and a titania precursor within evaporative emulsions and subsequent direct carbonization. Because the highly reactive titania precursors are easily crosslinked to form gels early in evaporation before the polymer beads are self-organized, non-reactive toluene-in-formamide emulsions are used. These non-aqueous emulsions should be stable at relatively high temperatures (~80 °C) for the evaporation process. We found that amphiphilic triblock copolymers of poly(ethylene oxide) (PEO) and poly(phenylene oxide) (PPO) with longer PEO chains (Pluronic® F108 (EO125-b-PO64-b-EO125) are required to stabilize those non-aqueous emulsions, and become more important at higher concentrations used for bulk fabrication. The carbon inside our C-MAC TiO2 significantly suppresses strong multiple scattering from structural defects or imperfections, thus emphasizing their Bragg reflection colors.
[References]
  1. Armstrong E, O’Dwyer C, J. Mater. Chem. C, 3, 6109, 2015
  2. Dufresne ER, Noh H, Saranathan V, Mochrie SGJ, Cao H, Prum RO, Soft Matter, 5, 1792, 2009
  3. Xiao M, Hu Z, Wang Z, Li Y, Tormo AD, Le Thomas N, Wang B, Gianneschi NC, Shawkey MD, Dhinojwala A, Sci. Adv., 3, e17011, 2017
  4. Leung SF, Zhang Q, Xiu F, Yu D, Ho JC, Li D, Fan Z, J. Phys. Chem. Lett., 5, 1479, 2014
  5. Fenzl C, Hirsch T, Wolfbeis OS, Angew. Chem.-Int. Edit., 53, 3318, 2014
  6. Arsenault AC, Puzzo DP, Manners I, Ozin GA, Nature Photon., 1, 468, 2007
  7. Zhang X, Wang F, Wang L, Lin Y, Zhy J, Dyes Pigment., 138, 182, 2017
  8. Chokpanyarat T, Punsuvon V, Achiwawanich S, Adv. Mater. Sci. Eng., 2018, 1, 2018
  9. Liu FF, Shan B, Zhang SF, Tang BT, Langmuir, 34(13), 3918, 2018
  10. Zalfani M, van der Schueren B, Mandouani M, Bourguiga R, Yu WB, Wu M, Deparis O, Li Y, Su BL, Appl. Catal. B: Environ., 199, 187, 2016
  11. Jiang Q, Wang L, Yan C, Guo Z, Wang N, Eng. Sci., 164, 2018
  12. Chen H, Lou R, Chen Y, Chen L, Lu J, Dong Q, Drug Deliv., 24, 775, 2017
  13. Cheng C, Karuturi SK, Liu L, Liu J, Li H, Su LT, Tok AI, Fan HJ, Small, 8, 37, 2012
  14. Yan X, Ye K, Zhang T, Xue C, Zhang D, Ma C, Wei J, Yang G, New J. Chem., 41, 8482, 2017
  15. Zhao H, Deng W, Li Y, Adv. Com. Hybrid. Mater., 1, 404, 2018
  16. Manoharan VN, Imhof A, Thorne JD, Pine DJ, Proc. SPIE, 44, 3937, 2000
  17. Schwarz JP, Spackman JR, Fahey DW, Gao RS, Lohmann U, et al., J. Geophy. Res., 113, D03203, 2008
  18. Takeoka Y, Yoshioka S, Takano A, Arai S, Nueangnoraj K, Nishihara H, Teshima M, Ohtsuka Y, Seki T, Angew. Chem.-Int. Edit., 52, 7261, 2013
  19. Wang W, Tang B, Ma W, Zhang J, Ju B, Zhang S, J. Opt. Soc. Am. A., 32, 1109, 2015
  20. Josephson DP, Miller M, Stein A, Z. Anorg. Allg. Chem., 640, 655, 2014
  21. Klein SM, Manoharan VN, Pine DJ, Lange FF, Langmuir, 21(15), 6669, 2005
  22. Imhof A, Pine DJ, J. Colloid Interface Sci., 192(2), 368, 1997
  23. Bragg WH, Bragg WL, Proc. Royal Soc. A, 88, 428, 1913
  24. Aguirre CI, Reguera E, Stein A, Adv. Funct. Mater., 20(16), 2565, 2010
  25. Kim SH, Cho YS, Jeon SJ, Eun TH, Yi GR, Yang SM, Adv. Mater., 20(17), 3268, 2008
  26. Veerappan G, Jung DW, Kwon J, Choi JM, Heo N, Yi GR, Park JH, Langmuir, 30(11), 3010, 2014
  27. Kim YB, Tran-Phu T, Kim M, Jung DW, Yi GR, Park JH, ACS. Appl. Mater. Interfaces, 7, 4511, 2015
  28. Koo HM, Tran-Phu T, Yi GR, Shin CH, Chung CH, Bae JW, Catal. Sci. Technol., 6, 4221, 2016
  29. Yang X, Liang C, Ma T, Guo Y, Kong J, Gu J, Chen M, Zhu J, Adv. Com. Hybrid. Mater., 1, 207, 2018