Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2117-2126, 2018
Effect of cohesive powders on pressure fluctuation characteristics of a binary gas-solid fluidized bed
The effect of cohesive particles on the pressure fluctuations was experimentally investigated in a binary gassolid fluidized bed. The pressure fluctuation signals were measured by differential pressure sensors under conditions of various weight percentages of cohesive particles. The cohesive particles increased the fixed bed pressure drop per unit height and decreased the minimum fluidization velocity. The Wen & Yu equation well predicts the minimum fluidization velocity of the binary system. The addition of cohesive particles slightly decreased the bubble size in bubbling flow regime when the cohesive particles and the coarse particles mixed well, while the bubble size greatly decreased when the cohesive particles agglomerated on the bed surface. The time series of pressure fluctuations was analyzed by using the methods of time domain, frequency domain and wavelet transformation. The normalized standard deviation of pressure fluctuations decreased with increasing weight percentages of cohesive particles. A wide bandwidth frequency of 0 to 1Hz got narrower with a single peak around 0.6Hz with an increase in proportion of the cohesive particles. The meso-energy and micro-energy of pressure fluctuations were decreasing with increasing cohesive particles proportions, which indicated that adding cohesive particles could reduce the energy dissipation of bubble and particle fluctuations.
[References]
  1. Alauddin ZABZ, Lahijani P, Mohammadi M, Mohamed AR, Renew. Sust. Energ. Rev., 14, 2852, 2010
  2. Borah RC, Ghosh P, Rao PG, Int. J. Energy Res., 35(11), 929, 2011
  3. Li JL, Nakazato T, Kato K, Chem. Eng. Sci., 59(13), 2777, 2004
  4. Yang Z, Tung Y, Kwauk M, Chem. Eng. Commun., 39, 217, 1985
  5. Konon HO, Huang CC, Morimoto E, Nakayama T, Hikosaka T, Powder Technol., 53, 163, 1987
  6. Nakazato T, Suzuki Y, Mahmoud EA, Nakagawa N, Asian Pac. Confederation Chem. Eng. Congress Progr. Abstracts (2004), DOI:10.11491/apcche.2004.0.40.0.
  7. Scuzzarella A, Bertos MF, Simons SJ, Hills CD, Carey PJ, Powder Technol., 163(1-2), 18, 2006
  8. Yates JG, Newton D, Chem. Eng. Sci., 41, 801, 1986
  9. Han B, The University of Western Ontario (2017).
  10. Zou Z, Li HZ, Zhu QS, Powder Technol., 212(1), 258, 2011
  11. Bi HT, Grace JR, Zhu J, Powder Technol., 82(3), 239, 1995
  12. Bi HTT, Chem. Eng. Sci., 62(13), 3473, 2007
  13. Johnsson F, Zijerveld RC, Schouten JC, van den Bleek CM, Leckner B, Int. J. Multiph. Flow, 26(4), 663, 2000
  14. Gomez-Hernandez J, Serrano D, Soria-Verdugo A, Sanchez-Delgado S, Chem. Eng. J., 284, 640, 2016
  15. van Ommen JR, Sasic S, van der Schaaf J, Gheorghiu S, Johnsson F, Coppens MO, Int. J. Multiph. Flow, 37(5), 403, 2011
  16. Tardos G, Pfeffer R, Powder Technol., 85(1), 29, 1995
  17. Briens C, Hamidi M, Berruti F, McMillan J, Powder Technol., 316, 92, 2017
  18. Xiang J, Li QH, Tan ZC, Zhang YG, Chem. Eng. Sci., 174, 93, 2017
  19. Davies CE, Carroll A, Flemmer R, Powder Technol., 180(3), 307, 2008
  20. Di J, The wavelet analysis theory, Science Press, Beijing (2010).
  21. Hurst HE, Trans. Am. Soc. Civil Engineers, 116, 776, 1951
  22. Wei LP, Lu YJ, Chem. Eng. Res. Des., 109, 657, 2016
  23. Lu YJ, Huang JK, Zheng PF, Chem. Eng. J., 274, 123, 2015
  24. Wen C, Yu Y, Chem. Eng. Prog. Symp. Ser., 62, 100, 1966
  25. Noda K, Uchida S, Makino T, Kamo H, Powder Technol., 46, 149, 1986
  26. Puncochar M, Drahos J, Chem. Eng. Sci., 60(5), 1193, 2005
  27. Chong YO, O’Dea DP, White ET, Lee PL, Leung LS, Powder Technol., 53, 237, 1987
  28. Hong SC, Jo BR, Doh DS, Choi CS, Powder Technol., 60, 215, 1990
  29. Sheikhi A, Sotudeh-Gharebagh R, Mostoufi N, Zarghami R, Powder Technol., 235, 787, 2013
  30. Zhao GB, Yang YR, AIChE J., 49(4), 869, 2003
  31. Karamavruc AI, Clark NN, Powder Technol., 90(3), 235, 1997
  32. Bai D, Issangya AS, Grace JR, Ind. Eng. Chem. Res., 38(3), 803, 1999