Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2024-2035, 2018
Investigation of the cell disruption methods for maximizing the extraction of arginase from mutant Bacillus licheniformis (M09) using statistical approach
Arginase, an intracellular enzyme produced by Bacillus licheniformis (NRS-1264) is effectively used as a drug in the treatment of arginine-dependent cancers, and it is essential for controlling acute neurological disorders. We investigated the effect of various cell disruption methods for maximizing the extraction of intracellular arginase from mutant Bacillus licheniformis (M09), followed by comparing optimization methods, one factor at a time (OFAT), evolutionary operation (EVOP) and response surface method (RSM). Ultrasonication for 2-5min having a suspension volume in the range of 12-20mL at a radio frequency power between 30-70 W appeared to be the most effective extraction technique for arginase. The arginase yield decreased in the range of 50-70 W of RF power/16-20mL suspension volume and 4-5min sonication time. EVOP predicted a maximum arginase extraction of 3,910 IUㆍL-1 at 2min sonication having 16mL suspension volume at 30W RF power. However, response surface optimization suggested an optimized condition of 3min sonication having 14.5mL suspension volume at 35W RF power in which the maximum arginase activity in the medium was 3,600 IUㆍL-1.
[References]
  1. Bewley MC, Lott JS, Baker EN, Patchett ML, Febs Lett., 386, 215, 1996
  2. Cheng PM, Lam TL, Lam WM, Tsui SM, Cheng AW, Lo WH, Leung YC, Cancer Res., 67, 309, 2007
  3. Feun L, Savaraj N, Expert. Opin. Investig. Drugs, 15, 815, 2006
  4. Jenkinson CP, Grody WW, Cederbaum SD, Comp. Biochem. Physiol. B. Biochem. Mol. Biol., 114, 107, 1996
  5. Prozesky OW, Grabow WOK, Merwe VD, Coetzee JN, J. Gen. Microbiol., 77, 237, 1973
  6. Zeller EA, Orden V, Kirchheimer WF, J. Bacteriol., 67, 153, 1954
  7. Green M, Mcphieii P, J. Biol. Chem., 265, 1601, 1989
  8. Borkovich KA, Weiss RL, J. Biol. Chem., 262, 7081, 1987
  9. Kim H, Kim KH, Yonsei Med. J., 37, 405, 1996
  10. Chang YK, Chu L, Biochem. Eng. J., 35, 37, 2007
  11. Kar JR, Singhal RS, Biotechnol. Rep., 5, 89, 2015
  12. Barba FJ, Grimi N, Vorobiev E, Food Eng. Rev., 7, 45, 2015
  13. Chisti Y, Moo-Young M, Enzyme Microb. Technol., 8, 194, 1986
  14. Cuellar-Bermudez SP, Aguilar-Hernandez I, Cardenas-Chavez DL, Romero-Ogawa MA, Parra-Saldivar R, Microb. Biotechnol., 8, 190, 2015
  15. Rosello-Soto E, Parniakov O, Barba FJ, Food Eng. Rev., 8, 214, 2016
  16. Puri M, Gupta S, Pahuja P, Kaur A, Kanwar JR, Kennedy JF, Appl. Biochem. Biotechnol., 160(1), 98, 2010
  17. Joshi C, Singhal RS, Korean J. Chem. Eng., 35(1), 195, 2018
  18. Barba FJ, Zhu Z, Orlien V, Trends Food Sci. Technol., 49, 96, 2016
  19. Banerjee R, Bhattacharyya BC, Biotechnol. Bioeng., 41, 67, 1993
  20. Dagbagli S, Goksungur Y, Electron. J. Biotechnol., 11, 11, 2008
  21. Liu Y, Gong G, Wu S, Carbohydr. Polym., 110, 278, 2014
  22. Joshi C, Singhal RS, Biocat. Agri. Biotech., 8, 228, 2016
  23. Andersen CJ, Strange B, Scand. J. Clin. Lab. Investig., 11, 122, 1959
  24. Asakura T, Adachi K, Schwartz E, J. Biol. Chem., 253, 6423, 1978
  25. Dange AD, Masurekar VB, J. Biosci., 3, 129, 1981
  26. Mukherjee G, Banerjee R, Appl. Biochem. Biotechnol., 118(1-3), 33, 2004
  27. Middelberg APJ, Biotechnol. Adv., 13, 491, 1995
  28. Singhal RS, Jayakar SS, Glob. J. Biotechnol. Biochem., 7, 90, 2012
  29. Harrison ST, Biotechnol. Adv., 9, 217, 1991
  30. Anis SNS, Nurhezreen MI, Sudesh K, Amirul AA, Appl. Biochem. Biotechnol., 167(3), 524, 2012
  31. Helenius A, Simons K, Biochim. Biophys. Acta, 415, 29, 1975
  32. Galabova D, Tuleva B, Spasova D, Enzyme Microb. Technol., 18(1), 18, 1996
  33. Harrison ST, Chase HA, Dennis JS, Biotechnol. Tech., 5, 115, 1991
  34. Zhao FS, Yu JY, Biotechnol. Prog., 17(3), 490, 2001
  35. Lovitt RW, Jones M, Collins SE, Coss GM, Yau CP, Attouch C, Process Biochem., 36(5), 415, 2000
  36. Feril LB, Kondo T, Ultrason. Sonochem., 12, 353, 2005
  37. Lee KJ, Row KH, Korean J. Chem. Eng., 23(5), 779, 2006
  38. Gogate PR, Kabadi AM, Biochem. Eng. J., 44, 60, 2009
  39. Ho CW, Chew TK, Ling TC, Kamaruddin S, Tan WS, Tey BT, Process Biochem., 41(8), 1829, 2006
  40. Feliu JX, Cubarsi R, Villaverde A, Biotechnol. Bioeng., 58(5), 536, 1998
  41. Choonia HS, Lele SS, Chem. Eng. Commun., 198(5), 668, 2011
  42. Kapucu H, Gulsoy N, Mehmetoglu U, Biochem. Eng. J., 5, 57, 2000
  43. Lateef A, Oke JK, Prapulla SG, Enzyme Microb. Technol., 40(5), 1067, 2007
  44. Bankar SB, Singhal RS, Bioresour. Technol., 101(21), 8370, 2010
  45. Ruchir C, Singhal RS, J. Microbiol. Biotechnol., 20, 950, 2010
  46. Kumar S, Katiyar N, Ingle P, Negi S, Bioresour. Technol., 102(7), 4909, 2011
  47. Mahapatra P, Kumari A, Indian J. Microbiol., 50, 396, 2010
  48. Vargas LHM, Piao ACS, Domingos RN, Carmona EC, World J. Microbiol. Biotechnol., 20, 137, 2004
  49. Apar DK, Ozbek B, Chem. Biochem. Eng. Q., 22, 113, 2008
  50. Demirhan E, Ozbek B, Chem. Eng. Commun., 196(7), 767, 2009
  51. Li S, Zhang H, Han D, Row KH, Korean J. Chem. Eng., 29(5), 650, 2012
  52. Koubaa M, Rosello-Soto E, Barba FJ, J. Agric. Food Chem., 63, 6835, 2015
  53. Yaldagard M, Mortazavi SA, Tabatabaie F, Korean J. Chem. Eng., 25(3), 517, 2008
  54. Pchelintsev NA, Adams PD, Nelson DM, PLoS One, 11, 1, 2016