Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 2015-2023, 2018
Removal of hexavalent chromium ion from aqueous solution using nanoscale zero-valent iron particles immobilized on porous silica support prepared by polymer template method
Porous silica supported nanoscale zero-valent iron was prepared by a polymer template method in order to effectively remove a hexavalent chromium ion (Cr(VI)) in an aqueous solution. It did not show a deterioration of Cr(VI) removal efficiency, which could be caused by the surface oxidation and agglomeration of nanoscale zero-valent iron (NZVI) particles. Porous silica by the polymer template method showed quite unique structure, which we named as quasi-inverse opal silica (QIOS), and it showed high surface area (375.4m2/g) and fine pore size (76.5 nm). NZVI immobilized on the surface of QIOS (NZVI@QIOS) was added to an aqueous Cr(VI) solution at 0.025 g/L, and it showed over 96% Cr(VI) removal efficiency. Such a high removal efficiency of Cr(VI) was maintained over two weeks after preparation (92% after 16 days). Morphology of porous silica supported nanoscale zero-valent iron was analyzed by TEM and FE-SEM. Identification of the reaction compounds produced by the reaction of Cr(VI) and zero-valent iron (Fe(0)) was made by the application of XPS.
[References]
  1. O’Carroll D, Sleep B, Krol M, Boparai H, Kocur C, Adv. Water Resour., 51, 104, 2013
  2. Rashmi SH, Madhu GM, Kittur AA, Suresh R, Int. J. Curr. Eng. Technol., 1, 37, 2013
  3. Petala E, Dimos K, Douvalis A, Bakas T, Tucek J, Zboril R, Karakassides MA, J. Hazard. Mater., 261, 295, 2013
  4. Sun X, Yu H, Zheng D, Wang X, Li J, Wang L, Appl. Surf. Sci., 279, 1, 2013
  5. Li Y, Ma H, Ren B, Li T, J. Anal. Methods Chem., 2013, 649503, 2013
  6. Li YC, Jin ZH, Li TL, Desalination, 288, 118, 2012
  7. Li Y, Jin Z, Li T, Xiu Z, Sci. Total Environ., 421-422, 260, 2012
  8. Li Y, Jin Z, Li T, Li S, Water Sci. Technol., 63, 2781, 2011
  9. Li Y, Li T, Jin Z, J. Environ. Sci., 23, 1211, 2011
  10. Oh YJ, Song H, Shin WS, Choi SJ, Kim Y, Chemosphere, 66, 858, 2007
  11. Choi KY, Luciani CV, Emdadi L, Lee SY, Baick IH, Lim JS, Macromol. Mater. Eng., 297, 1021, 2012
  12. Ashley K, Howe AM, Demange M, Nygren O, J. Environ. Monitor., 5, 707, 2003
  13. Dislich H, Angew. Chem.-Int. Edit., 10, 363, 1971
  14. Jiang H, Yang X, Chen C, Zhu Y, Li C, New J. Chem., 37, 1578, 2013
  15. Mao Z, Wu Q, Wang M, Yang Y, Long J, Chen X, Nanoscale Res. Lett., 9, 501, 2014
  16. Sun Y, Li X, Cao J, Zhang W, Wang HP, Adv. Colloid Interface Sci., 120, 47, 2006
  17. Ruiz-Baltazar A, Esparza R, Rosas G, Perez R, J. Nanomater., 2015, 1, 2015
  18. Biesinger MC, Payne BP, Grosvenor AP, Lau LWM, Gerson AR, Smart RS, Appl. Surf. Sci., 257(7), 2717, 2011
  19. Li XQ, Cao JS, Zhang WX, Ind. Eng. Chem. Res., 47(7), 2131, 2008
  20. Hou MF, Wan HF, Liu TL, Fan YN, Liu XM, Wang XG, Appl. Catal. B: Environ., 84(1-2), 170, 2008