Issue
Korean Journal of Chemical Engineering,
Vol.35, No.10, 1969-1978, 2018
Rheo-kinetics of bovine serum albumin in catanionic surfactant systems
The effects of catanionic surfactant systems consisting of mixtures of cationic cetyltrimethylamonium bromide (CTAB) and anionic sodium dodecyl sulfate (SDS) on the rheological properties and kinetics of bovine serum albumin (BSA) were investigated. The ionic strength of the solution was varied by using different mixing ratio of SDS and CTAB. Gelation curves observed in dynamic viscoelastic measurements were fitted with gelation kinetics models to describe the gelation under isothermal and non-isothermal conditions. Overall, the gelation of BSA in cationic-rich solutions was found to be more energetically favorable when compared with BSA solvated in anionic-rich solutions. Consequently, highest gel temperature (Tgel) and time (tgel) were observed for anionic-rich solutions with SDS/CTAB molar ratio of 4.0 (i.e., SDS/CTAB=4.0), while lowest gel temperature and time were found for cationic-rich solutions with SDS/CTAB molar ratio of 0.25 (SDS/CTAB=0.25). BSA in equal molar ratio of the mixed surfactants (SDS/ CTAB=1.0) showed a gel temperature and time in the halfway between the anionic and cationic-rich regions. Interestingly, under isothermal and non-isothermal conditions, BSA in equimolarly mixed and anionic-rich solutions showed a heat-dependent protective effect against thermal denaturation and gelation. The protective effect on BSA gelation in equimolar and anionic-rich solutions was diminished by increasing the catanionic concentration under non-isothermal conditions, while under isothermal conditions, protective effect on BSA gelation increased with catanionic concentration. On the other hand, cationic-rich solutions did not protect BSA from thermal denaturation and gelation, and therefore the gelation rate increased with catanionic concentration in all heating conditions examined.
[References]
  1. Nnyigide OS, Oh YA, Song HY, Park EK, Choi SH, Hyun K, Korea-Aust. Rheol. J., 29(2), 101, 2017
  2. Yu Z, Yu M, Zhang Z, Hong G, Xiong Q, Nanoscale Res. Lett., 9, 343, 2014
  3. Chakraborty A, Basak S, Colloids Surf. B: Biointerfaces, 63, 83, 2008
  4. Rogozea A, Matei I, Turcu IM, Ionita G, Sahini VE, Salifoglou A, J. Phys. Chem. B, 116(49), 14245, 2012
  5. Wang G, Hou H, Chen Y, Yan C, Baiab G, Luab Y, RSC Adv., 6, 19700, 2016
  6. Wasylewski Z, Kozik A, Eur. J. Biochem., 95, 121, 1979
  7. Sukow W, Sandberg H, Lewis E, Eatough D, Hansen L, Biochemistry, 19, 912, 1980
  8. Bolattin M, Nandibewoor S, Joshi S, Dixit S, Chimatadar S, RSC Adv., 6, 63463, 2016
  9. Singh RB, Mahanta S, Guchhait N, Chem. Phys. Lett., 463(1-3), 183, 2008
  10. Arriaga LR, Varade D, Carriere D, Drenckhan W, Langevin D, Langmuir, 29(10), 3214, 2013
  11. Lu R, Cao N, Lai L, Zhu B, Zhao G, Xiao J, Colloids Surf. B: Biointerfaces, 41, 139, 2005
  12. Renoncourt A, Study of supra-aggregates in catanionic surfactant systems, University of Regensburg (2005).
  13. Donato L, Garnier C, Novales B, Durand S, Doublier JL, Biomacromolecules, 6(1), 374, 2005
  14. Bocker L, Ruhs PA, Boni L, Fischer P, Kuster S, ACS Biomater. Sci. Eng., 2, 90, 2016
  15. Gillham JK, Benci JA, J. Appl. Polym. Sci., 18, 951, 1974
  16. Shakhnovich EI, Finkelstein AV, Biopolymers, 28, 1667, 1989
  17. Ahmed J, Ramaswamy HS, Alli I, J. Food Sci., 71, 158, 2006
  18. Singh H, Waungana A, Int. Dairy J., 11, 543, 2001
  19. Eleya MMO, Gunasekaran S, J. Food Sci., 67, 725, 2002
  20. Date P, Ottoor D, Polym. -Plast. Technol. Eng., 55, 403, 2016
  21. Salzer S, Rosema NA, Martin EC, Slot DE, Timmer CJ, Dorfer CE, van der Weijden GA, Clin. Oral Invest., 20, 443, 2016
  22. Patel A, Cholkar K, Mitra AK, Ther. Deliv., 5, 337, 2014
  23. Chambon F, Winter HH, J. Rheol., 31, 683, 1987
  24. Ampudia J, Larrauri E, Gil EM, Rodriguez M, Leon LM, J. Appl. Polym. Sci., 71, 1239, 1997
  25. Laza JM, Julian CA, Larrauri E, Rodriguez M, Leon LM, Polymer, 40, 35, 1998
  26. Grisel M, Muller G, Macromolecules, 31(13), 4277, 1998
  27. Madbouly SA, Otaigbe JU, Macromolecules, 39(12), 4144, 2006
  28. De Maria S, Ferrari G, Maresca P, Food Nutr. Sci., 6, 770, 2015
  29. Hyun K, Wilhelm M, Klein CO, Cho KS, Nam JG, Ahn KH, Lee SJ, Ewoldt RH, McKinley GH, Prog. Polym. Sci, 36, 1697, 2011
  30. Chronakis IS, J. Agric. Food Chem., 49, 888, 2001
  31. Van Kleef FSM, Biopolymers, 25, 31, 1986
  32. Alvarez MD, Cuesta FJ, Herranz B, Canet W, Foods, 6, 3, 2017
  33. Otzen DE, Biophys. J., 83, 2219, 2002
  34. Valstar A, Protein-Surfactant Interactions, Ph.D. Dissertations, Uppsala University, Uppsala, Sweden (2000).
  35. Puppo MC, Anon MC, J. Agric. Food Chem., 46, 3039, 1998
  36. Yoshida M, Kohyama K, Nishinari K, Biosci. Biotechnol. Biochem., 56, 725, 1992
  37. Bon CL, Nicolai T, Durand D, Macromolecules, 6120, 32, 1999
  38. Nnyigide OS, Hyun K, J. Chem. Technol. Metall., 51, 147, 2016
  39. Migliori M, Gabriele D, Baldino N, Lupi FR, De Cindio B, J. Food Proc. Eng., 34, 1266, 2011
  40. Chen HH, Kang HY, Chen SD, J. Food Eng., 88(1), 45, 2008
  41. Alvarez MD, Fuentes R, Olivares MD, Cuesta FJ, Canet W, J. Food Eng., 136, 9, 2014
  42. Rhim JW, Nunes RV, Jones VA, Swartzel KR, J. Food Sci., 54, 446, 1989
  43. Ahmed J, Ramaswamy HS, Ayad A, Alli I, Food Hydrocolloids, 22, 278, 2008
  44. Da Silva JA, Gongalves MP, Rao MA, Int. J. Biol. Macromol., 17, 25, 1995
  45. Yoon WB, Gunasekaran S, Park JW, J. Food Sci., 69, E238, 2004
  46. da Silva MA, Areas EPG, J. Colloid Interface Sci., 289(2), 394, 2005
  47. Kundu S, Chinchalikar AJ, Das K, Aswal VK, Kohlbrecher J, Chem. Phys. Lett., 584, 172, 2013
  48. Lefevre F, Fauconneau B, Ouali A, Culioli J, J. Sci. Food Agric., 82, 452, 2002
  49. Sun L, The Department of Chemical Engineering, Louisiana State University (2002).
  50. Tung CYM, Dynes PJ, J. Appl. Polym. Sci., 27, 569, 1982
  51. Fang YP, Takahashi R, Nishinari K, Biomacromolecules, 5(1), 126, 2004
  52. Kohyama K, Nishinari K, J. Agric. Food Chem., 41, 8, 1993
  53. Niki R, Kohyama K, Sano Y, Nishinari K, Polym. Gels Networks, 2, 105, 1994
  54. Yoshimura M, Nishinari K, Food Hydrocolloids, 13, 227, 1999
  55. Tobitani A, Rossmurphy SB, Macromolecules, 30(17), 4845, 1997
  56. Jachimska B, Wasilewska M, Adamczyk Z, Langmuir, 24(13), 6866, 2008
  57. Nnyigide OS, Lee SG, Hyun K, J. Mol. Model., 24, 75, 2018
  58. Jonsson M, Johansson H, J. Chromatogr. A, 983, 133, 2003
  59. Moriyama Y, Watanabe E, Kobayashi K, Harano H, Inui E, Takeda K, J. Phys. Chem. B, 112(51), 16585, 2008
  60. Holt JC, Creeth JM, Biochem. J., 129, 665, 1972
  61. Moriyama Y, Sato Y, Takeda K, J. Colloid Interface Sci., 156, 420, 1993
  62. Markus G, Love RL, Wissler FC, J. Biol. Chem., 239, 3687, 1964