Issue
Korean Journal of Chemical Engineering,
Vol.35, No.7, 1517-1524, 2018
Numerical study on particle deposition in rough channels with large-scale irregular roughness
We studied particle deposition in rough channels, using the W-M fractal function to characterize a largescale irregular surface with a root-mean-square roughness of 0.5mm. The flow was numerically investigated by Reynolds stress model, and the particles were tracked by a Lagrangian particle model. An analysis of the flow field in a rough channel shows that the roughness enhances the max flow velocity and the pressure drop in the channel. It induces several eddies in the concave of the rough surface. We also compared particle deposition in a rough channel with particle deposition in a smooth channel. This comparison shows that the roughness significantly enhances the particle deposition of small particles, but the enhancement decreases with the increase of particle size. Moreover, the particle deposition ratio decreases with increasing flow velocity
[References]
  1. Lecrivain G, Barry L, Hampel U, Powder Technol., 258, 134, 2014
  2. Feng H, Wang C, Huang Y, Korean J. Chem. Eng., 34(11), 2832, 2017
  3. Lai ACK, Byrne MA, Goddard AJH, J. Aerosol Sci., 32(1), 121, 2001
  4. Sommerfeld M, Kussin J, Powder Technol., 142(2-3), 180, 2004
  5. Browne LWB, Atmospheric Environment, 8, 801, 1974
  6. El-Shobokshy MS, Ismail IA, Atmospheric Environment, 14, 297, 1980
  7. Wood NB, J. Aerosol Sci., 12, 275, 1981
  8. El-Shobokshy MS, Atmos. Environ., 17, 639, 1983
  9. Kussin J, Sommerfeld M, Exp. Fluids, 33, 143, 2002
  10. Chen Q, Build. Environ., 44, 848, 2009
  11. Jiang H, Lu L, Sun K, Build. Environ., 45, 1184, 2010
  12. Sun K, Lu L, Jiang H, Build. Environ., 46, 1251, 2011
  13. Andarwa S, Tabrizi HB, Korean J. Chem. Eng., 34(5), 1319, 2017
  14. De Marchis M, Milici B, Sardina G, Napoli E, Int. J. Multiphase Flow, 78, 117, 2016
  15. Milici B, De Marchis M, Int. J. Heat Fluid Flow, 60, 1, 2016
  16. Yao J, Fairweather M, Chem. Eng. Sci., 84, 781, 2012
  17. Lecrivain G, Sevan DM, Thomas B, Hampel U, Adv. Powder Technol., 25(1), 310, 2014
  18. Tian L, Ahmadi G, J. Aerosol Sci., 38(4), 377, 2007
  19. Lain S, Sommerfeld M, Kussin J, Int. J. Heat Fluid Flow, 23, 647, 2002
  20. Lu H, Lu J, Build. Environ., 85, 61, 2015
  21. Lu H, Lu L, Build. Environ., 92, 317, 2015
  22. Lu H, Lu L, Build. Environ., 94, 43, 2015
  23. Lu H, Lu L, Appl. Therm. Eng., 93, 697, 2016
  24. Mandelbrot BB, Fractals: Form, chance and dimension, Freeman WH & Co., San Francisco (1977).
  25. Chen Y, Fu P, Zhang C, Shi M, Int. J. Heat Fluid Flow, 31, 622, 2010
  26. Zhang C, Deng Z, Chen Y, Int. J. Heat Mass Transfer, 70, 322, 2014
  27. Chen Y, Zhang C, Shi M, Peterson GP, Phys. Rev. E, 80, 026301, 2009
  28. Chen Y, Zhang C, Shi M, Peterson GP, Appl. Phys. Lett., 97, 084101, 2010
  29. Guo L, Xu H, Gong L, Appl. Therm. Eng., 84, 399, 2015
  30. Ling FF, Wear, 136, 141, 1990
  31. Majumdar A, Tien CL, Wear, 136, 313, 1990
  32. Launder BE, Reece GJ, Rodi W, J. Fluid Mech., 68, 537, 1975
  33. Launder BE, Spalding DB, Lectures in mathematical models of turbulence, Academic Press, London (1972).
  34. Hinds WC, Aerosol technology: Properties, behavior, and measurement of airborne particles, Wiley, New York (1984).
  35. Kim J, Moin P, Moser R, J. Fluid Mech., 177, 133, 1987
  36. Colebrook CF, White CM, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 161, 367 (1937).
  37. Guha A, J. Aerosol Sci., 28(8), 1517, 1997
  38. Liu H, Zhang L, Appl. Therm. Eng., 31, 3402, 2011
  39. Ounis H, Ahmadi G, J. Fluids Eng., 112, 114, 1990
  40. Kvasnak W, Ahmadi G, Bayer R, Gaynes M, J. Aerosol Sci., 24, 795, 1993
  41. Sippola MR, Nazaroff WW, Aerosol Sci. Technol., 38, 914, 2004
  42. Zhang Z, Chen Q, Atmos. Environ., 43, 319, 2009
  43. Gao N, Niu J, He Q, Zhu T, Wu J, Build. Environ., 48, 206, 2012