Issue
Korean Journal of Chemical Engineering,
Vol.35, No.7, 1509-1516, 2018
Conceptual feasibility studies of a COX-free hydrogen production from ammonia decomposition in a membrane reactor for PEM fuel cells
COX-free hydrogen production from ammonia decomposition in a membrane reactor (MR) for PEM fuel cells was studied using a commercial chemical process simulator, Aspen HYSYS®. With process simulation models validated by previously reported kinetics and experimental data, the effect of key operating parameters such as H2 permeance, He sweep gas flow, and operating temperature was investigated to compare the performance of an MR and a conventional packed-bed reactor (PBR). Higher ammonia conversions and H2 yields were obtained in an MR than ones in a PBR. It was also found that He sweep gas flow was favorable for XNH3 enhancement in an MR with a critical value (5 kmol h-1), above which no further effect was observed. A higher H2 permeance led to an increased H2 yield and H2 yield enhancement in an MR with the reverse effect of operating temperature on the enhancement. In addition, lower operating temperature resulted in higher XNH3 enhancement and H2 yield enhancement as well as NG cost savings in a MR compared to a conventional PBR.
[References]
  1. Dragomir F, Dragomir O, Olariu N, Oprea A, SBEEF, 3, 5, 2013
  2. Lu X, Xie S, Yang H, Tong Y, Ji H, Chem. Soc. Rev., 43, 7581, 2014
  3. Abashar MEE, Al-Sughair YS, Al-Mutaz IS, Appl. Catal. A: Gen., 236(1-2), 35, 2002
  4. Midilli A, Int. J. Glob. Warm., 10, 354, 2016
  5. Yang Z, Nie HG, Chen X, Chen XH, Huang SM, J. Power Sources, 236, 238, 2013
  6. Lamy C, Jaubert T, Baranton S, Coutanceau C, J. Power Sources, 245, 927, 2014
  7. Sharaf OZ, Orhan MF, Renew. Sust. Energ. Rev., 32, 810, 2014
  8. Sousa R, Gonzalez ER, J. Power Sources, 147(1-2), 32, 2005
  9. Mohtadi R, Lee WK, Van Zee JW, Appl. Catal. B: Environ., 56(1-2), 37, 2005
  10. Thounthong P, Rael S, Davat B, J. Power Sources, 193(1), 376, 2009
  11. Baschuk JJ, Li X, Appl. Energy, 86(2), 181, 2009
  12. Contreras A, Posso F, Guervos E, Appl. Energy, 87(4), 1376, 2010
  13. Shabani B, Andrews J, Int. J. Hydrog. Energy, 36(9), 5442, 2011
  14. Wang FC, Chiang YS, Int. J. Hydrog. Energy, 37(15), 11299, 2012
  15. Byambasuren U, Jeon Y, Altansukh D, Ji Y, Shul YG, Korean J. Chem. Eng., 33(6), 1831, 2016
  16. Minh NQ, Solid State Ion., 174(1-4), 271, 2004
  17. Brett DJL, Atkinson A, Brandon NP, Skinner SJ, Chem. Soc. Rev., 37, 1568, 2008
  18. Jacobson AJ, Chem. Mat., 22, 660, 2010
  19. Dicks AL, Curr. opin. Solid State Mat. Sci., 8, 379, 2004
  20. Brouwer J, Jabbari F, Leal EM, Orr T, J. Power Sources, 158(1), 213, 2006
  21. Kim TY, Kim BS, Park C, Yeo YK, Korean J. Chem. Eng., 34(7), 1952, 2017
  22. Song RH, Kim CS, Shin DR, J. Power Sources, 86(1-2), 289, 2000
  23. Neergat M, Shukla AK, J. Power Sources, 102(1-2), 317, 2001
  24. Sammes N, Bove R, Stahl K, Curr. opin. Solid State Mat. Sci., 8, 372, 2004
  25. Gulzow E, J. Power Sources, 61, 99, 1996
  26. Kordesch K, Hacker V, Gsellmann J, Cifrain M, Faleschini G, Enzinger P, Fankhauser R, Ortner M, Muhr M, Aronson RR, J. Power Sources, 86(1-2), 162, 2000
  27. Bej B, Pradhan NC, Neogi S, Catal. Today, 207, 28, 2013
  28. LeValley TL, Richard AR, Fan MH, Int. J. Hydrog. Energy, 39(30), 16983, 2014
  29. Nawfal M, Gennequin C, Labaki M, Nsouli B, Aboukais A, Abi-Aad E, Int. J. Hydrog. Energy, 40(2), 1269, 2015
  30. Ursua A, Gandia LM, Sanchis P, Proc. IEEE, 100, 410, 2012
  31. Voldsund M, Jordal K, Anantharaman R, Int. J. Hydrog. Energy, 41(9), 4969, 2016
  32. Song CS, Catal. Today, 77(1-2), 17, 2002
  33. Seo YT, Seo DJ, Jeong JH, Yoon WL, J. Power Sources, 160(1), 505, 2006
  34. Kim YH, Park ED, Lee HC, Lee D, Appl. Catal. A: Gen., 366(2), 363, 2009
  35. Park ED, Lee D, Lee HC, Catal. Today, 139, 280, 2009
  36. Chein RY, Chen YC, Chang CS, Chung JN, Int. J. Hydrog. Energy, 35(2), 589, 2010
  37. Lu AH, Nitz JJ, Comotti M, Weidenthaler C, Schlichte K, Lehmann CW, Terasaki O, Schuth F, J. Am. Chem. Soc., 132(40), 14152, 2010
  38. Miyamoto M, Hayakawa R, Makino Y, Oumi Y, Uemiya S, Asanuma M, Int. J. Hydrog. Energy, 39(19), 10154, 2014
  39. Di Carlo A, Vecchione L, Del Prete Z, Int. J. Hydrog. Energy, 39(2), 808, 2014
  40. Li G, Kanezashi M, Yoshioka T, Tsuru T, AIChE J., 59(1), 168, 2013
  41. Li G, Kanezashi M, Lee HR, Maeda M, Yoshioka T, Tsuru T, Int. J. Hydrog. Energy, 37(17), 12105, 2012
  42. Abashar MEE, J. King Saud Univ., Eng. Sci. (2016), DOI:10.1016/j.jksues.2016.01.002.
  43. Rahimpour MR, Asgari A, Int. J. Hydrog. Energy, 34(14), 5795, 2009
  44. Collins JP, Way JD, J. Membr. Sci., 96(3), 259, 1994
  45. Chambers A, Yoshii Y, Inada T, Miyamoto T, Can. J. Chem. Eng., 74(6), 929, 1996
  46. Garcia-Garcia FR, Ma YH, Rodriguez-Ramos I, Guerrero-Ruiz A, Catal. Commun., 9, 482, 2008
  47. Rizzuto E, Palange P, Del Prete Z, Int. J. Hydrog. Energy, 39(22), 11403, 2014
  48. Itoh N, Oshima A, Suga E, Sato T, Catal. Today, 236, 70, 2014
  49. Di Carlo A, Dell'Era A, Del Prete Z, Int. J. Hydrog. Energy, 36(18), 11815, 2011
  50. Jasuja H, Peterson GW, Decoste JB, Browe MA, Walton KS, Chem. Eng. Sci., 124, 118, 2015
  51. Vitse F, Cooper M, Botte GG, J. Power Sources, 14218, 2005
  52. Amar IA, Lan R, Petit CTG, Tao S, J. Solid State Electochem., 15, 1845, 2011
  53. Modak JM, Resonance, 16, 1159, 2011
  54. Temkin MI, Pyzhev V, Acta Phys. Chim. URSS, 12, 217, 1940
  55. West AH, Posarac D, Ellis N, Bioresour. Technol., 99(14), 6587, 2008
  56. Bassyouni M, ul Hasan SW, Abdel-Aziz MH, Abdel-hamid SMS, Naveed S, Hussain A, Ani FN, Energy Conv. Manag., 88, 693, 2014
  57. Øi LE, Brathen T, Berg C, Brekne SK, Flatin M, Johnsen R, Moen IG, Thomassen E, Energy Procedia, 51, 224, 2014
  58. Lee B, Lee S, Jung HY, Ryi SK, Lim H, Front. Chem. Sci. Eng., 10, 224, 2014
  59. Lee B, Jeong S, Lee S, Jung HY, Ryi SK, Lim H, Greenh. Gases, 7, 542, 2017
  60. Sarvar-Amini A, Sotudeh-Gharebagh R, Bashiri H, Mostoufi N, Haghtalab A, Energy Fuels, 21(6), 3593, 2007
  61. Roberts M, Zabransky R, Doong S, Lin J, Single membrane reactor configuration for separation of hydrogen, carbon dioxide and hydrogen sulfide, Department of Energy, U.S.A. (2008).
  62. Jeong S, Kim S, Lee B, Ryi SK, Lim H, Int. J. Hydrogen Energy (2017), DOI:10.1016/j.ijhydene.2017.07.202.
  63. Kim S, Ryi SK, Lim H, Int. J. Hydrogen Energy (2017), DOI:10.1016/j.ijhydene.2017.09.084.
  64. Zeng PY, Chen ZH, Zhou W, Gu HX, Shao ZP, Liu SM, J. Membr. Sci., 291(1-2), 148, 2007
  65. Mendes D, Chibante V, Zheng JM, Tosti S, Borgognoni F, Mendes A, Madeira LM, Int. J. Hydrog. Energy, 35(22), 12596, 2010
  66. Lobera MP, Serra JM, Foghmoes SP, Søgaard M, Kaiser A, J. Membr. Sci., 358-356, 154, 2011
  67. Santos A, Coronas J, Menendez M, Santamaria J, Catal. Lett., 30, 189, 1994
  68. Rao MB, Sircar S, J. Membr. Sci., 110(1), 109, 1996
  69. Ferreira-Aparicio P, Benito M, Kouachi K, Menad S, J. Catal., 231(2), 331, 2005
  70. Bhatia S, Thien CY, Mohamed AR, Chem. Eng. J., 148(2-3), 525, 2009
  71. Yu W, Ohmori T, Yamamoto T, Endo A, Nakaiwa M, Hayakawa T, Itoh N, Int. J. Hydrog. Energy, 30(10), 1071, 2005
  72. Lee B, Lim H, Korean J. Chem. Eng., 34(1), 199, 2017
  73. Kikuchi E, Catal. Today, 56(1-3), 97, 2000
  74. Lim H, Oyama ST, J. Membr. Sci., 378(1-2), 179, 2011
  75. Rahimpour MR, Samimi F, Babapoor A, Tohidian T, Mohebi S, Chem. Eng. Process., 121, 24, 2017