Issue
Korean Journal of Chemical Engineering,
Vol.35, No.7, 1441-1449, 2018
Purification of textile wastewater by using coated Sr/S/N doped TiO2 nanolayers on glass orbs
Simultaneous doping of TiO2 nanoparticles with three elements including Sr, S, and N is reported. The resulting material shows superior photocatalytic performance toward degradation of textile waste under visible and sunlight. The pure and doped TiO2 nanolayers were prepared by sol-gel method and were fixed on a bed of glass orbs. The immobilized TiO2 were characterized by a variety of techniques: X-ray diffraction (XRD), scanning electron microscopy (SEM), spectroscopy diffusion reflection (DRS), energy dispersive X-ray spectrometry (EDS) and elemental analysis (CHNS). The photocatalytic activity of the prepared fixed-bed materials toward degradation of the textile wastes was determined by using ultraviolet-visible spectroscopy (UV-Vis) and measurement of the chemical oxygen demand testing (COD). The best photocatalytic activity was observed with the use of Sr/S/N-TiO2 nano-layers. Afterwards, the experimental conditions were optimized by tuning reaction parameters, including amount of doped metal ion on photocatalyst structure, sample solution pH and photoreactor output flow rate. The results confirmed that at natural pH 5.9 of sample solution, maximum decomposition of 91-99% of azo dyes was obtained in 8 h under visible irradiation. Finally, the experiments were repeated under 1.5 AM sunlight with high volume of reactants in order to confirm the cost-effectiveness of the designed photocatalyst.
[References]
  1. Lee SY, Park SJ, J. Ind. Eng. Chem., 19(6), 1761, 2013
  2. Guesh K, Mayoral A, Marquez_Alvarez C, Chebude Y, Diaz I, Microporous Mesoporous Mater., 225, 88, 2016
  3. Chen BY, Zhang MM, Chang CT, Ding YT, Lin KL, Chiou CS, Hsueh CC, Xu HZ, Bioresour. Technol., 101(12), 4737, 2010
  4. Arslan-Alaton I, Ferry JL, Dyes Pigment., 54, 25, 2002
  5. Golka K, Kopps S, Myslak ZW, Toxicol. Lett., 151, 203, 2004
  6. Malato S, Fernandez-Ibanez P, Maldonado MI, Blanco J, Gernjak W, Catal. Today, 147(1), 1, 2009
  7. Brienza M, Ahmed MM, Escande A, Plantard G, Scrano L, Chiron S, Bufo SA, Goetz V, Chemosphere, 148, 473, 2016
  8. Cheng M, Zeng GM, Huang DL, Lai C, Xu P, Zhang C, Liu Y, Chem. Eng. J., 284, 582, 2016
  9. Suzuki H, Araki S, Yamamoto H, J. Water. Proc. Eng., 7, 54, 2015
  10. Rao PM, Cai L, Liu C, Cho IS, Lee CH, Weisse JM, Yang P, Zheng X, Nano. Lett., 14, 1099, 2014
  11. Kubacka A, Fernandez-Garcia M, Colon G, Chem. Rev., 112, 1555, 2011
  12. Rauf MA, Ashraf SS, Chem. Eng. J., 151(1-3), 10, 2009
  13. Malengreaux CM, Leonard GML, Pirard SL, Cimieri I, Lambert SD, Bartlett JR, Heinrichs B, Chem. Eng. J., 243, 537, 2014
  14. Ajmal A, Majeed I, Malik RN, Idriss H, Nadeem MA, RSC Adv., 4, 37003, 2014
  15. Gaya UI, Abdullah AH, J. Photochem. Photobiol. C Photochem. Rev., 9, 1, 2008
  16. Bhatkhande DS, Pangarkar VG, Beenackers AACM, J. Chem. Technol. Biotechnol., 77, 102, 2001
  17. Mahmoodi NM, Arami M, Limaee NY, J. Hazard. Mater., 133(1-3), 113, 2006
  18. Ivanova I, Schneider J, Gutzmann H, Kliemann JO, Gartner F, Klassen T, Bahnemann D, Mendive CB, Catal. Today, 209, 84, 2013
  19. Zangeneh H, Zinatizadeh AAL, Habibi M, Akia M, Isa MH, J. Ind. Eng. Chem., 26, 1, 2015
  20. Umare SS, Charanpahari A, Sasikala R, Mater. Chem. Phys., 140(2-3), 529, 2013
  21. Palmas S, Da Pozzo A, Mascia M, Vacca A, Ricci PC, Chem. Eng. J., 211-212, 285, 2012
  22. Malengreaux CM, Leonard GML, Pirard SL, Cimieri I, Lambert SD, Bartlett JR, Heinrichs B, Chem. Eng. J., 243, 537, 2014
  23. Asahi R, Morikava T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269, 2001
  24. Naraginti S, Thejaswini TVL, Prabhakaran D, Sivakumar A, Satyanarayana VSV, Prasad ASA, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 149, 571, 2015
  25. Akpan UG, Hameed BH, Appl. Catal. A: Gen., 375(1), 1, 2010
  26. Tseng TK, Lin YS, Chen YJ, Chu H, Int. J. Mol. Sci., 11(6), 2336, 2010
  27. Yang MC, Yang TS, Wong MS, Thin Solid Films, 469-470, 1, 2004
  28. Sonawane RS, Kale BB, Dongare MK, Mater. Chem. Phys., 85(1), 52, 2004
  29. Zahedi F, Behpour M, Ghoreishi SM, Khalilian H, Sol. Energy, 120, 287, 2015
  30. Behpour M, Atouf V, Appl. Surf. Sci., 258(17), 6595, 2012
  31. Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Dunlop PSM, Hamilton JWJ, Byrne JA, O'Shea K, Entezari MH, Dionysiou DD, Appl. Catal. B: Environ., 125, 331, 2012
  32. Zhang J, Zhou P, Liu J, Yu J, Phys. Chem. Chem. Phys., 16, 20382, 2014
  33. Ma LQ, Xu WC, Zhu SL, Cui ZD, Yang XJ, Inoue A, Mater. Chem. Phys., 170, 186, 2016
  34. Macwan DP, Dave PN, Chaturvedi S, J. Mater. Sci., 46(11), 3669, 2011
  35. Hurum DC, Agrios AG, Gray KA, Rajh T, Thurnauer MC, J. Phys. Chem. B, 107(19), 4545, 2003
  36. Rattanakam R, Supothina S, Res. Chem. Intermed., 35, 263, 2009
  37. Mamane H, Horovitz I, Lozzi L, Di Camillo D, Avisar D, Chem. Eng. J., 257, 159, 2014
  38. Sood S, Umar A, Mehta SK, Sinha ASK, Kansal SK, Ceram. Int., 41, 3533, 2015
  39. Zahedi F, Behpour M, Ghoreishi SM, Khalilian H, Sol. Energy, 120, 287, 2015
  40. Konstantinou IK, Albanis TA, Appl. Catal. B: Environ., 49(1), 1, 2004
  41. Hsieh SH, Chen WJ, Wu CT, Appl. Surf. Sci., 340, 9, 2015