Issue
Korean Journal of Chemical Engineering,
Vol.35, No.7, 1423-1432, 2018
Linear and non-linear analyses on the onset of miscible viscous fingering in a porous medium
The onset of miscible viscous fingering in porous media was analyzed theoretically. The linear stability equations were derived in the self-similar domain, and solved through the modal and non-modal analyses. In the nonmodal analysis, adjoint equations were derived using the Lagrangian multiplier technique. Through the non-modal analysis, we show that initially the system is unconditionally stable even in the unfavorable viscosity distribution, and there exists the most unstable initial disturbance. To relate the theoretical predictions with the experimental work, nonlinear direct numerical simulations were also conducted. The present stability condition explains the system more reasonably than the previous results based on the conventional quasi-steady state approximation.
[References]
  1. Hill S, Chem. Eng. Sci., 1, 247, 1952
  2. Slobod RL, Thomas RA, Soc. Pet. Eng. J., 3, 9, 1963
  3. Perkins TE, Johnston OE, Hoffman RN, Soc. Pet. Eng. J., 5, 301, 1965
  4. Tan CT, Homsy GM, Phys. Fluids, 29, 3549, 1986
  5. Homsy GM, Ann. Rev. Fluid Mech., 19, 271, 1987
  6. Wit AD, Bertho Y, Martin M, Phys. Fluids, 17, 054114, 2005
  7. Rousseaux G, Wit AD, Martin M, J. Chromatogr. A, 1149, 254, 2007
  8. Bhaskar KR, Garik P, Turner BS, Bradley JD, Bansil R, Stanley HE, LaMont JT, Nature, 360, 458, 1982
  9. Fujita T, Ohara S, Sugaya T, Saigenji K, Hotta K, Comp. Biochem. Physiol. B, 126, 353, 2000
  10. Plante LD, Romano PM, Fernandez EJ, Chem. Eng. Sci., 49(14), 2229, 1994
  11. Broyles BS, Shalliker RA, Cherrak DE, Guiochon G, J. Chromatogr. A, 822, 173, 1998
  12. Dickson ML, Norton TT, Fernandez EJ, AIChE J., 43(2), 409, 1997
  13. Manickam O, Homsy GM, J. Fluid Mech., 288, 75, 1995
  14. Azaiez J, Singh B, Phys. Fluids, 14, 1557, 2002
  15. Hejazi SH, Trevelyan PMJ, Azaiez J, Wit AD, J. Fluid Mech., 652, 501, 2010
  16. Mishra M, Trevelyan PMJ, Almarcha C, Phys. Rev. Lett., 105, 204501, 2010
  17. Yortsos YC, Zeybek M, Phys. Fluids, 31, 3511, 1988
  18. Tan CT, Homsy GM, Phys. Fluids, 31, 1330, 1988
  19. Doumenc F, Boeck T, Guerrier B, Rossi M, J. Fluid Mech., 648, 521, 2010
  20. Wooding RA, ZAMP, 13, 255, 1962
  21. Ben Y, Demekhin EA, Chang HC, Phys. Fluids, 14, 999, 2002
  22. Pritchard D, Eur. J. Mech. B/Fluids, 28, 564, 2009
  23. Pramanik S, Mishra M, Phys. Fluids, 25, 074104, 2013
  24. Pramanik S, Mishra M, Chem. Eng. Sci., 110, 144, 2014
  25. Kim MC, Choi CK, Phys. Fluids, 23, 084105, 2011
  26. Kim MC, Choi CK, Phys. Fluids, 24, 044102, 2012
  27. Kim MC, Adv. Water Resour., 35, 1, 2012
  28. Kim MC, Transp. Porous Media, 97(3), 395, 2013
  29. Kim MC, Korean J. Chem. Eng., 35(2), 364, 2018
  30. Farrell BF, Ioannou PJ, J. Atmos. Sci., 53, 2041, 1996
  31. Barenblatt GI, Scaling, Self-Similarity and Intermediate Asymptotics, Cambridge University Press (1996).
  32. Zimmerman WB, Homsy GM, Phys. Fluids A, 4, 2348, 1992
  33. Schmid PJ, Annu. Rev. Fluid Mech., 39, 129, 2007
  34. Tilton N, Daniel D, Riaz A, Phys. Fluids, 25, 092107, 2013
  35. Andres JTH, Cardoso SSS, Chaos, 22, 037113, 2012
  36. Daniel D, Tilton N, Riaz A, J. Fluid Mech., 727, 456, 2013