Issue
Korean Journal of Chemical Engineering,
Vol.35, No.7, 1409-1413, 2018
Adsorption characteristics of arsenic and phosphate onto iron impregnated biochar derived from anaerobic granular sludge
Biological wastewater treatment produces biowaste (sludge), which contains a high portion of organic matter. The organic matter comes from microorganisms, and the biowaste can be converted into biochar, a carbon-rich, fine-grained, and porous substance. Granular sludge from upflow anaerobic sludge blanket contains more organic matter (80 wt% of dry matter) and carbon content (>50% of organic matter). In this study, iron impregnated biochar was prepared to remove arsenic (As) and phosphate, oxyanionic pollutants, from the aqueous phase. The iron impregnation of biochar was executed in a one-step by pyrolyzing the biowaste in the presence of Fe instead of conventional two-step, i.e., biochar production after then modification. The granular sludge biochar and activated sludge biochar did not adsorb at all As and phosphate. The adsorption capacity of granular sludge biochar was enhanced via iron impregnation, and the iron-impregnated granular sludge biochar removed 10.37mg PO4 3-/g, 11.5mg As(V)/g, and 6.1mg As(III)/g, respectively. Therefore, the one-step process enhanced the adsorption capacity and reduced processing time for the adsorbent synthesis.
[References]
  1. Ministry of Environment, Korea (2010).
  2. Ministry of Environment, Korea (2011).
  3. Yoo HY, J. Korean Org. Resour. Recycl. Assoc., 11 (2016).
  4. Ministry of Environment, Korea (2014).
  5. Park SY, Park GY, Kim DH, Yang JS, Baek K, Sep. Sci. Technol., 45(12-13), 1982, 2010
  6. Agrafioti E, Bouras G, Kalderis D, Diamadopoulos E, J. Anal. Appl. Pyrolysis, 101, 72, 2013
  7. Manara P, Zabaniotou A, Renew. Sust. Energ. Rev., 16, 2566, 2012
  8. Lehmann J, Nature, 447, 143, 2007
  9. Ahmadi M, Kouhgardi E, Ramavandi B, Korean J. Chem. Eng., 33(9), 2589, 2016
  10. Jeon P, Lee ME, Baek K, J. Taiwan Inst. Chem. Eng., 77, 244, 2017
  11. Ahmad M, Rajapaksha AU, Lim JE, Zhang M, Bolan N, Mohan D, Vithanage M, Lee SS, Ok YS, Chemosphere, 99, 19, 2014
  12. Inyang MI, Gao B, Yao Y, Xue YW, Zimmerman A, Mosa A, Pullammanappallil P, Ok YS, Cao XD, Crit. Rev. Environ. Sci. Technol., 46, 406, 2016
  13. Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M, Bioresour. Technol., 130, 457, 2013
  14. Cope CO, Webster DS, Sabatini DA, Sci. Total Environ., 488, 558, 2014
  15. Ren J, Li N, Li L, An JK, Zhao L, Ren NQ, Bioresour. Technol., 178, 119, 2015
  16. Hu X, Ding ZH, Zimmerman AR, Wang SS, Gao B, Water Res., 68, 206, 2015
  17. Samsuri AW, Sadegh-Zadeh F, Seh-Bardan BJ, Environ. Chem. Eng., 1, 981, 2013
  18. Kim D, Min KJ, Lee K, Yu MS, Park KY, Environ. Eng. Sci., 22, 12, 2016
  19. Yoon HS, Chung KW, Kim CJ, Kim JH, Lee HS, Kim SJ, Lee SI, Yoo SJ, Lim BC, Korean J. Chem. Eng., 35(2), 470, 2018
  20. Mandal BK, Suzuki KT, Talanta, 58, 201, 2002
  21. Mohan D, Pittman CU, J. Hazard. Mater., 142(1-2), 1, 2007
  22. Celik I, Gallicchio L, Boyd K, Lam TK, Matanoski G, et al., Environ. Res., 108, 48, 2008
  23. Choong TSY, Chuah TG, Robiah Y, Koay FLG, Azni I, Desalination, 217(1-3), 139, 2007
  24. Smith VH, Environ. Sci. Pollut. Res., 10, 126, 2003
  25. Mainstone CP, Parr W, Sci. Total Environ., 282, 25, 2002
  26. Dixit S, Hering JG, Environ. Sci. Technol., 37, 4182, 2003
  27. Miller SM, Zimmerman JB, Water Res., 44, 5722, 2010
  28. Tiwari D, Jamsheera A, Zirlianngura, Lee SM, Environ. Eng. Res., 22, 186, 2017
  29. Bandpei AM, Mohseni SM, Sheikhmohammadi A, Sardar M, Sarkhosh M, Almasian M, Avazpour M, Mosallanejad Z, Atafar Z, Nazari S, SoheilaRezaei, Korean J. Chem. Eng., 34(2), 376, 2017
  30. Shin SY, Park SM, Baek K, Environ. Sci. Pollut. Res., 24, 9820, 2017
  31. Ryu SR, Jeon EK, Yang JS, Baek K, J. Taiwan Inst. Chem. Eng., 72, 62, 2017
  32. Kim JH, Park JA, Kang JK, Kim SB, Lee CG, Lee SH, Choi JW, Environ. Eng. Res., 20, 73, 2015
  33. Borah D, Satokawa S, Kato S, Kojima T, J. Hazard. Mater., 162(2-3), 1269, 2009
  34. Qiu H, Lv L, Pan BC, Zhang QJ, Zhang MW, Zhang QX, J. Zhejiang Univ.-Sci. A, 10, 716, 2009
  35. Dawood S, Sen TK, Water Res., 46, 1933, 2012
  36. Jeon P, Lee ME, Baek K, J. Taiwan Inst. Chem. Eng., 77, 244, 2017
  37. Ryu SR, Jeon EK, Baek K, J. Taiwan Inst. Chem. Eng., 70, 252, 2017
  38. Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS, Bioresour. Technol., 107, 419, 2012
  39. Lee JC, Kim EJ, Kim HW, Baek K, Geoderma, 270, 76, 2016
  40. Choi YS, J. Korean Org. Resour. Recycl. Assoc., 23, 60, 2015
  41. Zeng Z, Zhang SD, Li TQ, Zhao FL, He ZL, Zhao HP, Yang XE, Wang HL, Zhao J, Rafiq MT, J. Zhejiang Univ.-Sci. B, 14, 1152, 2013
  42. Yoo JC, Park SM, Yoon GS, Tsang DCW, Baek K, Chemosphere, 185, 501, 2017
  43. Yang JS, Kim YS, Park SM, Baek K, Environ. Sci. Pollut. Res., 21, 10878, 2014
  44. Jeon EK, Ryu S, Park SW, Wang L, Tsang DCW, Baek K, J. Clean Prod., 176, 54, 2018