Issue
Korean Journal of Chemical Engineering,
Vol.35, No.5, 1137-1143, 2018
Enhanced D-ribose production by genetic modification and medium optimization in Bacillus subtilis 168
D-ribose, a five-carbon sugar with diverse applications, is mainly produced by transketolase(tkt)-deficient Bacillus subtilis (B. Subtilis). We constructed B.subtilis SFR-3A by replacing the corresponding sites of B. subtilis 168 with the mutation site of tkt in the “wild” D-ribose high-producing strain B. subtilis SFR-4, resulting in 5.29 g/L of Dribose. In the meantime, B.subtilis SFR-159 was constructed by completely removing the tkt gene of B. subtilis 168 with a higher production of 6.21 g/L. Through medium optimization, batch fermentation of SFR-3A and SFR-159 gave the best result of 27.56 g/L and 29.89 g/L, which corresponds to productivity of 0.51 g/L/h and 0.41 g/L/h, respectively. In this work, SFR-3A showed more latent capacity over SFR-159 as to productivity and had greater potential to serve as a platform for D-ribose production.
[References]
  1. Sasajima KI, Yoneda M, Agr. Biol. Chem., 35(4), 509, 1971
  2. Dewulf P, Vandamme EJ, Appl. Microbiol. Biotechnol., 48(2), 141, 1997
  3. Pauly DF, Pepine CJ, J. Cardiovasc. Pharmacol. Ther., 5(4), 249, 2000
  4. Maccarter D, Vijay N, Washam M, Shecterle L, Sierminski H, Int. J. Cardiol., 137(1), 79, 2009
  5. Park YC, Kim SG, Park K, Lee KH, Seo JH, Appl. Microbiol. Biotechnol., 66(3), 297, 2004
  6. Toivari MH, Maacheimo H, Penttila M, Ruohonen L, Appl. Microbiol. Biotechnol., 85, 731, 2000
  7. Park HC, Kim YJ, Lee CW, Rhlo YT, Kang JW, Lee DH, Seong YJ, Park YC, Lee D, Kim SG, Process. Biochem., 52, 73, 2017
  8. Srivastava RK, Maiti SK, Das D, Bapat PM, Batta K, Bhushan M, Wangikar PP, J. Ind. Microbiol. Biotechnol., 39, 1227, 2012
  9. Srivastava RK, Wangikar PP, J. Chem. Technol. Biotechnol., 83, 110, 2008
  10. Srivastava RK, Jaiswal R, Panda D, Wangikar PP, Biotechnol. Bioeng., 102(5), 1387, 2009
  11. Wulf PD, Soetaert W, Schwengers D, Vandamme EJ, J. Appl. Microbiol., 83, 25, 1997
  12. Nijland R, Burgess JG, Errington J, Veening JW, PLOS ONE, 5(3), e9724, 2010
  13. Fang T, Chen X, Li N, Song H, Bai J, Xiong J, Ying H, Korean J. Chem. Eng., 27(6), 1725, 2010
  14. Park YC, Seo JH, J. Microbiol. Biotechnol., 14(4), 665, 2004
  15. Wei Z, Zhou J, Sun WJ, Cui FJ, Xu QH, Liu CF, BioMed Research International, Article ID 535097 (2015).
  16. Wu L, Li ZM, Ye Q, J. Ind. Microbiol. Biotechnol., 36, 1289, 2009
  17. Park YC, Lee HJ, Kim CS, Seo JH, J. Microbiol. Biotechnol., 23(4), 560, 2013
  18. Cheng J, Zhuang W, Li NN, Tang CL, Ying HJ, Lett. Appl. Microbiol., 64, 73, 2017
  19. Park YC, Choi JH, Bennett GN, Seo JH, J. Biothchnol., 121, 508, 2006
  20. Belda E, Sekowska A, Le FF, Morgat A, Mornico D, Ouzounis C, Vallenet D, Claudine M, Danchin A, Microbiology, 159, 757, 2013
  21. Zhao XY, Liu JJ, Zhang JX, Li PW, Food Drug., 7(3), 23, 2005
  22. Shevchuk NA, Bryksin AV, Nusinovich YA, Cabello FC, Sutherland M, Ladisch S, Nucleic Acids Res., 32(2), e19, 2004
  23. Yan X, Yu HJ, Hong Q, Li SP, Appl. Environ. Microbiol., 74(17), 5556, 2008
  24. Spizizen J, Proc. Natl. Acad Sci. U.S.A., 44, 1072, 1958
  25. Tian YJ, Fan YX, Liu JJ, Zhao XY, Chen W, Electron. J. Biotechnol., 19, 41, 2016
  26. Saxena J, Tanner RS, World J. Microbiol. Biotechnol., 28(4), 1553, 2012
  27. Wulf FD, Soetaert W, Schwengers D, Vandamme EJ, J. Ind. Microbiol., 17(2), 104, 1996