Issue
Korean Journal of Chemical Engineering,
Vol.35, No.3, 757-763, 2018
High Selectivity and removal efficiency of lotus root-based activated carbon towards Fe(III) in La(III) solution
Rare earth elements are an important strategic resource. However, a trace of Fe(III) impurity has serious adverse impact on the performance of rare earth materials. We synthesized a novel nitrogen-containing carbon material, ACLR-400, using lotus root as raw materials. The ACLR-400 was characterized by surface area analyzer, elemental analysis and FT-IR. The selectivity and removal efficiency of ACLR-400 towards Fe(III) were also investigated. The BET specific surface area of ACLR-400 was 68.44m2·g-1, and the average pore diameter was 12.54 nm. With abundant nitrogen- containing functional groups and well-developed internal pore structure, ACLR-400 possesses strong adsorption affinity, excellent selectivity and removal efficiency for Fe(III). The adsorption capacity of ACLR-400 towards Fe(III) could reach to 0.46mmol·g-1, selectivity coefficient with respect to La(III) was 8.9, and removal efficiency was 99.61%. The adsorption isotherm data greatly obey the Freundlich isotherm. In addition, ACLR-400 can be regenerated easily and possesses better regeneration ability and reusability.
[References]
  1. An FQ, Gao BJ, Huang XW, Zhang YQ, Li YB, Xu Y, Zhang ZG, Gao JF, Chen ZP, React. Funct. Polym., 73(1), 60, 2013
  2. Ou GL, Gao JF, Hu TP, RSC Adv., 5, 71878, 2015
  3. Tunsu C, Retegan T, Hydrometallurgy, 6, 139, 2016
  4. Wang YY, Lu HH, Liu YX, Colloids Surf. A: Physicochem. Eng. Asp., 509, 550, 2016
  5. An FQ, Wu RY, Li M, Environ. Chem. Eng., 5, 1638, 2017
  6. Wang WS, Li YB, Gao BJ, Eng. Res. Des., 91, 2759, 2013
  7. Peng WJ, Li HQ, Liu YY, J. Mol. Liq., 230, 496, 2017
  8. Behdani FN, Rafsanjani AT, Torab-Mostaedi M, Mohammadpour SMAK, Korean J. Chem. Eng., 30(2), 448, 2013
  9. Khan SB, Marwani HM, Seo J, Bull. Mat. Sci., 38, 327, 2015
  10. Sui N, Huang K, Lin JY, Li XP, Wang XQ, Xiao CX, Liu HZ, Sep. Purif. Technol., 127, 97, 2014
  11. Rahman MM, Khan SB, Marwani HM, J. Taiwan Inst. Chem. E., 45, 1964, 2014
  12. Karim MR, Takehira H, Rahman MM, J. Organomet. Chem., 808, 42, 2016
  13. Saha PD, Chowdhury S, Datta S, Sanyal SK, Korean J. Chem. Eng., 29(8), 1086, 2012
  14. Gao B, Meng J, Xu Y, Zhang Y, J. Ind. Eng. Chem., 24, 351, 2015
  15. Park CM, Han J, Chu KH, Al-Hamadani YAJ, Her N, Heo J, Yoon Y, J. Ind. Eng. Chem., 48, 186, 2017
  16. Ryoo KS, Jung SY, Sim H, Bull. Korean Chem. Soc., 34, 2753, 2013
  17. Li B, Yang L, Wang CQ, Chemosphere, 175, 332, 2017
  18. Han X, Lin HF, Zheng Y, J. Hazard. Mater., 297, 217, 2015
  19. Lu XC, Jiang JC, Sun K, Bull. Korean Chem. Soc., 35, 103, 2014
  20. Zhou Y, Apul OG, Karanfil T, Water Res., 79, 57, 2015
  21. Zhang Z, Feng X, Yue XX, An FQ, Zhou WX, Gao JF, Hu TP, Wei CC, Korean J. Chem. Eng., 32(8), 1564, 2015
  22. Bhati S, Mahur JS, Dixit S, Bull. Korean Chem. Soc., 34, 569, 2013
  23. Essandoh M, Wolgemuth D, Pittman CU, Chemosphere, 174, 49, 2017
  24. Tan ZX, Wang YH, Kasiuliene A, Clean Technol. Environ. Policy., 19, 761, 2017
  25. Zou ZM, Tang YL, Jiang CH, J. Environ. Chem. Eng., 3, 898, 2015
  26. Li B, Yang L, Wang CQ, Chemosphere, 175, 332, 2017
  27. Yun YS, Kim D, Park HH, Synth. Met., 162, 2337, 2012
  28. Kim JH, Cho S, Bae TS, Sens. Actuators B-Chem., 197, 20, 2014
  29. Rosas JM, Bedia J, Rodriguez-Mirasol J, Cordero T, Ind. Eng. Chem. Res., 47(4), 1288, 2008
  30. Suresh JRP, Chandrasekaran V, Pol. J. Chem. Tech., 14, 88, 2012
  31. Rouquerol J, Avnir D, Fairbridge CW, Pure Appl. Chem., 66, 1739, 1994
  32. Thommes M, Guillet-Nicolas R, Cychosz KA, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 349 (2015).
  33. Lagergren S, Svenska K, Vetensk Akad. Handl., 24, 1 (1898).
  34. Ho YS, McKay G, Process Biochem., 34(5), 451, 1999
  35. Langmuir I, J. Am. Chem. Soc., 38, 2221, 1916
  36. Freundlich HMF, Z. Phys. Chem., 57, 385, 1906