Issue
Korean Journal of Chemical Engineering,
Vol.35, No.2, 574-578, 2018
Deep-ultraviolet photodetector based on exfoliated n-type β-Ga2O3 nanobelt/p-Si substrate heterojunction
Low-dimensional semiconductor p-n junctions as components for optoelectronic devices are considered to be more promising than thin film equivalents. We fabricated heterojunction p-n solar blind photodiodes with the configuration of n-type β-Ga2O3 nanobelts contacted onto p-Si substrates. The junction between β-Ga2O3 and Si was formed by van der Waals interactions. The fabricated heterojunction p-n diodes exhibited typical rectifying current. voltage characteristics, with a rectification ratio as high as 1.56×104 at ±20 V and an ideality factor of approximately eight. Photoresponsive measurements showed that the heterojunction p-n diodes had a high sensitivity and selectivity for light at a wavelength of 254 nm, with fast response and decay characteristics. For the fast-response components, the response time constant was 4.06 s and the decay time constant was 0.16 s. The exfoliated β-Ga2O3 nanobelt/Si p-n heterojunction presented here constitutes a functional unit for low-dimensional ultra-wide bandgap electronic and optoelectronic devices.
[References]
  1. Onuma T, Saito S, Sasaki K, Masui T, Yamaguchi T, Honda T, Higashiwaki M, Japan J. Appl. Phys., 54, 112601, 2015
  2. He H, Orlando R, Blanco M, Pandey R, Amzallag E, Baraille I, Rerat M, Phys. Rev. B, 74, 195123, 2006
  3. Higashiwaki M, Sasaki K, Kuramata A, Masui T, Yamakoshi S, Appl. Phys. Lett., 100, 013504, 2012
  4. Mastro MA, Kuramata A, Calkins J, Kim J, Ren F, Pearton SJ, ESC J. Solid State Sci. Technol., 6(5), 356, 2017
  5. Sasaki K, Higashiwaki M, Kuramata A, Masui T, Yamakoshi S, J. Cryst. Growth, 378, 591, 2013
  6. Higashiwaki M, Sasaki K, Kamimura T, Wong MH, Krishnamurthy D, Kuramata A, Masui T, Yamakoshi S, Appl. Phys. Lett., 103, 123511, 2013
  7. An YH, Guo DY, Li SY, Wu ZP, Huang YQ, Li PG, Li LH, Tang WH, J. Phys. D-Appl. Phys., 49, 285111, 2016
  8. Guo DY, Shi HZ, Qian YP, Lv M, Li PG, Su YL, Liu Q, Chen K, Wang SL, Cui C, Li CR, Tang WH, Semicond. Sci. Technol., 32, 03LT01, 2017
  9. Kong WY, Wu GA, Wang KY, Zhang TF, Zou YF, Wang DD, Luo LB, Adv. Mater., 28(48), 10725, 2016
  10. Chen Z, Wang X, Zhang F, Noda X, Saito K, Tanaka T, Nishio M, Arita M, Guo Q, Appl. Phys. Lett., 109, 022107, 2016
  11. Qian F, Gradecak S, Li Y, Wen CY, Lieber CM, Nano Lett., 5, 2287, 2005
  12. Hou Y, Kim JS, Ashkenazi S, O’Donnell M, Guo L, Appl. Phys. Lett., 89, 093901, 2006
  13. Lupan W, Ursaki VV, Chai G, Chow L, Emelchenko GA, Tiginyanu IM, Gruzintsev AN, Redkin AN, Sens. Actuators B-Chem., 144, 56, 2010
  14. Li YB, Tokizono T, Liao MY, Zhong MA, Koide Y, Yamada I, Delaunay JJ, Adv. Funct. Mater., 20(22), 3972, 2010
  15. Zou RJ, Zhang ZY, Liu Q, Hu JQ, Sang LW, Liao MY, Zhang WJ, Small, 10, 1848, 2014
  16. Li L, Auer E, Liao MY, Fang XS, Zhai TY, Gautam UK, Lugstein A, Koide Y, Bando Y, Golberg D, Nanoscale, 3, 1120, 2011
  17. Tian W, Zhi CY, Zhai TY, Chen SM, Wang X, Liao MY, Golberg D, Bando Y, J. Mater. Chem., 22, 17984, 2012
  18. Feng W, Wang XN, Zhang J, Wang LF, Yang B, J. Mater. Chem., 2, 3254, 2014
  19. Lee GH, Yu YJ, Cui X, Petrone N, Lee CH, Choi MS, Lee DY, Lee C, Yoo WJ, Watanabe K, Taniguchi T, Nuckolls C, Kim P, Hone J, ACS Nano, 7(9), 7931, 2013
  20. Feng Z, Chen B, Qian S, Xu L, Feng L, Yu Y, Zhang R, Chen J, Li Q, Li Q, Sun C, Zhang H, Liu J, Pang W, Zhang D, 2D Mater., 3, 035021, 2016
  21. Kumar S, Sarau G, Tessarek C, Bashouti MY, Hahnel A, Christiansen S, Singh R, J. Phys. D-Appl. Phys., 47, 435101, 2014
  22. Oh S, Kim J, Ren F, Pearton SJ, Kim J, J. Mater. Chem., 4, 9245, 2016
  23. Kim J, Oh S, Mastro MA, Kim J, Phys. Chem. Chem. Phys., 18, 15760, 2016
  24. Ahman J, Svensson G, Albertsson J, Acta Crystallogr. Sect. A, 52, 1336, 1996
  25. Guo XC, Hao NH, Guo DY, Wu ZP, An YH, Chu XL, Li LH, Li PG, Lei M, Tang WH, J. Alloy. Compd., 660, 136, 2016
  26. Guo D, Wu Z, Li P, An Y, Liu H, Guo X, Yan H, Wang G, Sun C, Li L, Tang W, Opt. Mater. Express., 4, 1067, 2014
  27. Guo DY, Wu ZP, An YH, Guo XC, Chu XL, Sun CL, Li LH, Li PG, Tang WH, Appl. Phys. Lett., 105, 023507, 2014
  28. Kwon Y, Lee G, Oh S, Kim J, Pearton SJ, Ren F, Appl. Phys. Lett., 110, 131901, 2017
  29. Sze SM, Ng KK, Physics of Semiconductor Devices, 3rd Ed., Wiley-Interscience (2007).
  30. Chen Z, Nishihagi K, Wang X, Saito K, Tanaka T, Nishio M, Arita M, Guo Q, Appl. Phys. Lett., 109, 102106, 2016
  31. Lovejoy TC, Chen R, Zheng X, Villora EG, Shimamura K, Yoshikawa H, Yamashita Y, Ueda T, Kobayashi K, Dunham ST, Ohuchi FS, Olmstead MA, Appl. Phys. Lett., 100, 181602, 2012
  32. Kokubun Y, Kubo S, Nakagomi S, Appl. Phys. Express., 9, 091101, 2016