Issue
Korean Journal of Chemical Engineering,
Vol.35, No.2, 567-573, 2018
Performance of inverted organic photovoltaic cells with nitrogen doped TiO2 films by atomic layer deposition
Atomic layer deposition (ALD) was used to synthesize titanium oxide (TiO2) film as an electron transport layer (ETL) in inverted organic photovoltaic cells (IOPVs). By adjusting the ALD precursor ratio and deposition temperature, the thickness of the TiO2 film was 5 nm, and its effect on the photovoltaic performances was evaluated. We also investigated the effect of nitrogen doping of TiO2 on the power conversion efficiency (PCE) of the cells. An IOPV cell fabricated with a 0.6%-nitrogen-doped TiO2 (N-TiO2 A) ETL exhibited a PCE of 2.27%, which is a 6% increase compared with an equivalent cell containing an undoped TiO2 ETL. Furthermore, the XPS results confirmed the doping of nitrogen into the samples. The doping improved the electrical properties of the TiO2 films evidenced by the Hall measurements in terms of conductivity, hall electron mobility and carrier density.
[References]
  1. Chu VB, Park SJ, Park GS, Jeon HS, Hwang YJ, Min BK, Korean J. Chem. Eng., 33(3), 880, 2016
  2. Pham VHT, Truong NTN, Trinh TK, Lee SH, Park C, Korean J. Chem. Eng., 33(2), 678, 2016
  3. Irwin MD, Buchholz DB, Hains AW, Chang RPH, Marks TJ, Proc. Nat. Ac. Sci., 105, 2783, 2008
  4. Kim H, Nam S, Jeong J, Lee S, Seo J, Han H, Kim Y, Korean J. Chem. Eng., 31(7), 1095, 2014
  5. He Z, Xiao B, Liu F, Wu H, Yang Y, Xiao S, Wang C, Russell TP, Cao Y, Nature Photonics, 9, 174, 2015
  6. Zafar M, Yun JY, Kim DH, Korean J. Chem. Eng., 34(5), 1504, 2017
  7. Rao AD, Karalatti S, Thomas T, Ramamurthy PC, ACS Appl. Mater. Interfaces, 6, 16792, 2014
  8. Zafar M, Yun JY, Kim DH, Appl. Surf. Sci., 398, 9, 2017
  9. Cho HH, Cho CH, Kang H, Yu H, Oh JH, Kim BJ, Korean J. Chem. Eng., 32(2), 261, 2015
  10. Chu VB, Park SJ, Park GS, Jeon HS, Hwang YJ, Min BK, Korean J. Chem. Eng., 33(3), 880, 2016
  11. Aprilia A, Wulandari P, Suendo V, Herman, Hidayat R, Fujii A, Ozaki M, Sol. Energy Mater. Sol. Cells, 111, 181, 2013
  12. Vasilopoulou IM, Georgiadou DG, Soultati A, Boukos N, Gardelis S, Palilis LC, Fakis M, et al., Adv. Energy Mater., 4, 140021, 2014
  13. Kim KD, Lim DC, Seo HO, Lee JY, Seo BY, Lee DJ, Song Y, Cho S, Lim JH, Kim YD, Appl. Surf. Sci., 279, 380, 2013
  14. Seo HO, Park SY, Shim WH, Kim KD, Lee KH, Jo MY, Kim JH, Lee E, Kim DW, Kim YD, Lim DC, J. Phys. Chem., 115, 21517, 2011
  15. Cho HS, Shin N, Kim K, Kim B, Kim DH, Synthetic Metals, 207, 31, 2015
  16. Kim JG, Shi D, Kong KJ, Heo YU, Kim JH, Jo MR, Lee YC, Kang YM, Dou SX, ACS Appl. Mater. Interfaces, 5, 691, 2013
  17. Cong Y, Zhang J, Chen F, Anpo M, J. Phys. Chem., 111, 6976, 2007
  18. Su YK, Wang PC, Lin CL, Huang GS, Wei CM, IEEE Electron. Device. Lett., 35, 575, 2014
  19. Wang IQ, Pan YZ, Huang SS, Ren ST, Li P, Li JJ, Nanotechnology, 22, 025501, 2011
  20. Gonzalez-Garcia L, Gonzalez-Valls I, Lira-Cantu M, Barranco A, Gonzalez-Elipe AR, Energy Environ. Sci., 4, 3426, 2011
  21. Song MS, Jeong CH, Kim DH, Sci. Adv. Mater., 8, 75, 2016
  22. Li G, Zhu R, Yang Y, Nature Photonics, 6, 153, 2012
  23. de Villers BT, Tassone CJ, Tolbert SH, Schwartz BJ, J. Phys. Chem., 113, 18978, 2009
  24. Chen S, Manders JR, Tsang SW, So F, J. Mater. Chem., 22, 24202, 2012
  25. Arunachalam A, Dhanapandian S, Manoharan C, Bououdina M, Ramalingam G, Rajasekaran M, Radhakrishnan M, Ibraheem AM, Ceram. Int., 42, 1136, 2016
  26. Zhang W, Zhu S, Li Y, Wang F, Vacuum, 82, 328, 2007
  27. Yoo S, Domercq B, Kippelen B, J. Appl. Phys., 97, 103706, 2005
  28. Ye ZY, Lu HL, Geng Y, Gu YZ, Xie ZY, Zhang Y, Sun QQ, Ding SJ, Zhang DW, Nanoscale Res. Lett., 8, 108, 2013
  29. Premkumar J, Chem. Mater., 16, 3980, 2004
  30. Solovan MN, Brus VV, Maistruk EV, Maryanchuk PD, Inorganic Materials, 50, 40, 2014
  31. Zhang W, Cai J, Wang D, Wang Q, Wang S, 2010 11th International Conference on (IEEE, 2010), pp. 7-11.
  32. Kawamura M, Abe Y, Yanagisawa H, Sasaki K, Thin Solid Films, 287(1-2), 115, 1996