Issue
Korean Journal of Chemical Engineering,
Vol.35, No.2, 498-502, 2018
Improving the CO2 fixation rate by increasing flow rate of the flue gas from microalgae in a raceway pond
Residence time of flue gas bubbles with different solution velocities and the influence of NOX and SO2 from flue gas on pH values of culture solutions were analyzed based on large-scale raceway reactors. Microalgal growth and CO2 fixation rates were also investigated with different gas flow rates. Bubble residence time was ~1.1 s when the solution velocity was 20 cm/s. The NOX and SO2 effects on microalgal growth were negligible, although 66% NOX and 95% SO2 were captured by the microalgal solution. Microalgal biomass productivity increased from 10.3 to 14.1 g/m2/d when flue gas flow rate increased from 20 to 50m3/h. CO2 fixation and microalgae biomass productivity increased further from 26.3 to 31.9 g/m2/d and from 14.1 to 17.1 g/m2/d, respectively, upon increase of flue gas flow rate from 50 to 150m3/h.
[References]
  1. Maeda K, Owada M, Kimura N, Omata K, Karube I, Fuel Energ. Abstracts, 36, 717, 1995
  2. Benemann JR, Energy Conv. Manag., 38, S475, 1997
  3. Benemann JR, Final Report to the US Department of Energy. National Energy Technology Laboratory Apcab (2003).
  4. Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M, Appl. Microbiol. Biotechnol., 82(1), 179, 2009
  5. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS, Bioresour. Technol., 102(1), 71, 2011
  6. Chiu SY, Kao CY, Huang TT, Lin CJ, Ong SC, Chen CD, Chang JS, Lin CS, Bioresour. Technol., 102(19), 9135, 2011
  7. Rezvani S, Moheimani NR, Bahri PA, Comput. Chem. Eng., 84, 290, 2016
  8. Sostaric M, Klinar D, Bricelj M, Golob J, Berovic M, Likozar B, New Biotechnol., 29, 325, 2012
  9. Klofutar B, Golob J, Likozar B, Klofutar C, Zagar E, Poljansek I, Bioresour. Technol., 101(10), 3333, 2010
  10. Harun R, Singh M, Forde GM, Danquah MK, Renew. Sust. Energ. Rev., 14, 1037, 2010
  11. Moheimani NR, J. Appl. Phycol., 28, 2139, 2015
  12. Li SW, Luo SJ, Guo RB, Bioresour. Technol., 136, 267, 2013
  13. Moazami N, Ashori A, Ranjbar R, Tangestani M, Eghtesadi R, Nejad AS, Biomass Bioenerg., 39, 449, 2012
  14. Gharagozloo PE, Drewry JL, Collins AM, Dempster TA, Choi CY, James SC, J. Appl. Phycol., 26, 2303, 2014
  15. Chiaramonti D, Prussi M, Casini D, Tredici MR, Rodolfi L, Bassi N, Zittelli GC, Bondioli P, Appl. Energy, 102, 101, 2013
  16. Handler RM, Canter CE, Kalnes TN, Lupton FS, Kholiqov O, Shonnard R, Blowers P, Algal Res. Biomass Biofuels Bioprod., 1, 83, 2012
  17. Cheng J, Yang ZB, Ye Q, Zhou JH, Cen KF, Bioresour. Technol., 201, 174, 2016
  18. Waller P, Ryan R, Kacira M, Li PW, Biomass Bioenerg., 46, 702, 2012
  19. Crowe B, Attalah S, Agrawal S, Waller P, Ryan R, Van Wagenen J, Chavis A, Kyndt J, Kacira M, Ogdenet KL, Huesemann M, Int. J. Chem. Eng., 2012, 1, 2012
  20. Mendoza JL, Granados MR, de Godos I, Acien FG, Molina E, Banks C, Heaven S, Biomass Bioenerg., 54, 267, 2013
  21. Yang ZB, Cheng J, Liu JZ, Zhou JH, Cen KF, Bioresour. Technol., 216, 267, 2016
  22. Yang ZB, Cheng J, Li K, Zhou JH, Cen KF, Bioresour. Technol., 214, 276, 2016
  23. Cheng J, Yang ZB, Huang Y, Huang L, Hu LZ, Xu DH, Zhou JH, Cen KF, Bioresour. Technol., 190, 235, 2015
  24. Yang ZB, Cheng J, Lin RC, Zhou JH, Cen KF, Bioresour. Technol., 211, 429, 2016
  25. Liu CJ, Liang B, Tang SW, Min EZ, Chin. J. Chem. Eng., 21(11), 1206, 2013
  26. Loubiere K, Castaignede V, Hebrard G, Roustan M, Chem. Eng. Process., 43(6), 717, 2004
  27. Ramezani M, Kong B, Gao X, Olsen MG, Vigil RD, Chem. Eng. J., 279, 286, 2015
  28. Kim K, Choi J, Ji Y, Park S, Do H, Hwang C, Lee B, Holzapfel W, Bioresour. Technol., 170, 310, 2014
  29. Huertas E, Montero O, Lubian LM, Aquacult. Eng., 22, 181, 2000
  30. Cheng J, Yang ZB, Ye Q, Zhou JH, Cen KF, Bioresour. Technol., 190, 29, 2015
  31. Raven JA, Photosynth. Res., 77, 155, 2003
  32. Matsuda Y, Nakajima K, Tachibana M, Photosynth. Res., 109, 191, 2011
  33. Moheimani NR, Borowitzka MA, Appl. Microbiol. Biotechnol., 90(4), 1399, 2011