Issue
Korean Journal of Chemical Engineering,
Vol.35, No.2, 489-497, 2018
Recovery of nitrate from water streams using amine-grafted and magnetized SBA-15
Mesoporous silica SBA-15 was modified using amine-grafting and magnetization to enhance its nitrate adsorption capacity and to render the spent silica particles recoverable from the working solution after use. Such modifications result in an outstanding adsorbent for recovering nitrate from water streams by adding high adsorption ability and easy handling to the intrinsic properties of SBA-15. When the molar ratio of SBA-15 to 3-aminopropyltriethoxysilane (APTES) is 10 : 3 during amine-grafting, the resulting SBA-15G-4 sample exhibits the highest nitrate adsorption capacity (44.9mg/g) among the tested materials. The other sample, 67-SBA-15MG, which was magnetized with iron nitrate content of 67 wt% of SBA-15, exhibits sufficient magnetic force for recovery from the working solution, while maintaining ~81% of nitrate adsorption capacity of the corresponding amine-grafted SBA-15G-5. Furthermore, the 67-SBA-15MG material retains its adsorption capacity and magnetic strength after ten adsorption/desorption cycles, indicating excellent characteristics as a magnetically recyclable adsorbent for recovering nitrate.
[References]
  1. Ghafari S, Hasan M, Aroua MK, Bioresour. Technol., 99(10), 3965, 2008
  2. Shrimali M, Singh KP, Environ. Pollut., 112, 351, 2001
  3. Playchoom C, Pungrasmi W, Powtongsook S, IPCBEE, 1, 307, IACSIT Press, Singapore (2011).
  4. Schick J, Caullet P, Paillaund JL, Patarin J, Callarec CM,, Microporous Mesoporous Mater., 142, 549, 2011
  5. Kappor A, Viraraghavan T, J. Environ. Eng.-ASCE, 123, 371, 1997
  6. Jensen VB, Darby JL, Seidel C, Gorman C, Crit. Rev. Env. Sci. Tec., 44, 2203, 2014
  7. Loaganathan P, Vigneswaran S, Kandasamy J, J. Environ. Manage., 131, 363, 2013
  8. Bhatnagar A, Sillanpaa M, Chem. Eng. J., 168(2), 493, 2011
  9. Chatterjee S, Woo SH, J. Hazard. Mater., 164(2-3), 1012, 2009
  10. Jun S, Kim JM, Ryoo R, Ahn YS, Han MH, Microporous Mesoporous Mater., 41, 119, 2000
  11. Beck JS, Vartuli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL, J. Am. Chem. Soc., 114, 10834, 1992
  12. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548, 1998
  13. Nguyen TPB, Lee JW, Shim WG, Moon H, Microporous Mesoporous Mater., 110, 560, 2008
  14. Mesa M, Sierra L, Guth JL, Microporous Mesoporous Mater., 112, 338, 2008
  15. Kruk M, Jaroniec M, Ko CH, Ryoo R, Chem. Mater., 12, 1961, 2000
  16. Kim Y, Bae J, Park J, Suh J, Lee S, Park H, Choi H, Chem. Eng. J., 256, 475, 2014
  17. Saad R, Hamoudi S, Belkacemi K, J. Porous Mat., 15, 315, 2008
  18. Da'na E, De Silva N, Sayari A, Chem. Eng. J., 166(1), 454, 2011
  19. Benhamou A, Basly JP, Baudu M, Derriche Z, Hamacha R, J. Colloid Interface Sci., 404, 135, 2013
  20. Yokoi T, Yoshitake H, Yamada T, Kubota Y, Tatsumi T, J. Mater. Chem., 16, 1125, 2006
  21. Kim BC, Lee J, Um W, Kim J, Joo J, Lee JH, Kwak JH, Kim JH, Lee C, Lee H, Addleman RS, Hyeon T, Gu MB, Kim J, J. Hazard. Mater., 192(3), 1140, 2011
  22. Lee J, Na HB, Kim BC, Lee JH, Lee B, Kwak JH, Hwang Y, Park JG, Gu MB, Kim J, Joo J, Shin CH, Grate JW, Hyeon T, Kim J, J. Mater. Chem., 19, 7864, 2009
  23. Bourlinos AB, Simopoulos A, Boukos N, Petridis D, J. Phys. Chem. B, 105(31), 7432, 2001
  24. Bachari K, Touileb A, Solid State Sci., 11, 1549, 2009
  25. Kim JY, Balathanigaimani MS, Moon H, Water Air Soil Pollut., 226, 431, 2015
  26. Zorgani EA, Cibati A, Trois C, Water Air Soil Pollut., 227, 249, 2016
  27. Yang GCC, Lee HL, Water Res., 39, 884, 2005