Issue
Korean Journal of Chemical Engineering,
Vol.35, No.2, 428-437, 2018
Co-pyrolytic behaviors of biomass and polystyrene: Kinetics, thermodynamics and evolved gas analysis
The pyrolytic degradation mechanism of chestnut shell (CNS) and its blend with waste polystyrene (PS) were investigated. Individual pyrolysis behavior of samples obtained separately was compared with those of the blends using a combined TGA/MS/FT-IR system. To elaborate kinetic analysis and to determine kinetic parameters, distributed activation energy model (DAEM) was used. The average activation energy of co-pyrolytic decomposition reaction was 191.6 kJ/mol, while the activation energy of the pyrolysis of CNS and PS was 175.2 and 208.9 kJ/mol, respectively. Friedman and Flynn-Wall-Ozawa iso-conversional methods were applied and the results were found to be consistent with the models. To express the presence of complex reaction mechanisms and the interactions of the radicals, thermodynamic parameters were also calculated. Finally, the pathways for main volatiles were established, and their relationship with the pyrolytic degradation was suggested.
[References]
  1. Ragaert K, Delva L, Van Geem K, Waste Manage., Article in Press (2017).
  2. Plastics Europe, EuPC, EPRO (2015) Plastics, Demand and Recovery for 2015.
  3. European Commission Energy Strategy and Energy Union Website, http://ec.europa.eu/energy/en/topics/energy-strategy-and-energyunion/2020-energy-strategy.
  4. Mukherjee A, Das P, Minu K, Biomass Conversion and Biorefinery, 4(3), 259, 2014
  5. Bekri-Abbes I, Bayoudh S, Baklouti M, J. Polym. Environ., 14(3), 249, 2006
  6. Sinha R, Kumar S, Singh R, Biomass Conversion and Biorefinery, 3(4), 327, 2013
  7. Othman MR, Park YH, Ngo TA, Kim SS, Kim J, Lee KS, Korean J. Chem. Eng., 27(1), 163, 2010
  8. Butler E, Devlin G, McDonnell K, Waste Biomass Valorization, 2(3), 227, 2011
  9. Kosanic TR, Ceranic MB, Duric SN, Grkovic VR, Milotic MM, Brankov SD, J. Therm. Sci., 23(3), 290, 2014
  10. Polesek-Karczewska S, Kardas D, J. Therm. Sci., 24(1), 82, 2015
  11. Soysa R, Choi YS, Choi SK, Kim SJ, Han SY, Korean J. Chem. Eng., 33(2), 603, 2016
  12. Pollex A, Ortwein A, Kaltschmitt M, Biomass Conversion Biorefinery, 2(1), 21, 2012
  13. Nzihou A, Stanmore B, Sharrock P, Energy, 58, 305, 2013
  14. Junpirom S, Tangsathitkulchai C, Tangsathitkulchai M, Korean J. Chem. Eng., 27(3), 791, 2010
  15. Santos BS, Capareda SC, Biomass Conversion Biorefinery, 6(3), 325, 2016
  16. Mohammed IY, Lim CH, Kazi FK, Yusup S, Lam HL, Abakr YA, Waste Biomass Valorization, 8(3), 911, 2016
  17. Chen L, Wang S, Meng H, Wu Z, Zhao J, Appl. Therm. Eng., 111, 834, 2017
  18. Brebu M, Ucar S, Vasile C, Yanik J, Fuel, 89(8), 1911, 2010
  19. Al-Salem SM, Lettieri P, Chem. Eng. Res. Des., 88(12A), 1599, 2010
  20. Lee HW, Choi SJ, Park SH, Jeon JK, Jung SC, Kim SC, Park YK, Nanoscale Res. Lett., 9(1), 376, 2014
  21. Sakaki A, Roozbehani B, Shishesaz M, Abdollahkhani N, Clean Technologies and Environ. Policy, 16(5), 901 (2014).
  22. Shah J, J. Polym. Environ., 1 (2014).
  23. Barbarias I, Lopez G, Alvarez J, Artetxe M, Arregi A, Bilbao J, Olazar M, Chem. Eng. J., 296, 191, 2016
  24. Han B, Chen Y, Wu Y, Hua D, Chen Z, Feng W, Yang M, Xie Q, J. Therm. Anal. Calorim., 115(1), 227, 2014
  25. Chattopadhyay J, Pathak TS, Srivastava R, Singh AC, Energy, 103, 513, 2016
  26. Xiong S, Zhuo J, Zhou H, Pang R, Yao Q, J. Anal. Appl. Pyrolysis, 112, 66, 2015
  27. Kim YM, Han TU, Hwang BA, Lee B, Lee HW, Park YK, Kim S, Korean J. Chem. Eng., 33(8), 2350, 2016
  28. Alvarez J, Kumagai S, Wu CF, Yoshioka T, Bilbao J, Olazar M, Williams PT, Int. J. Hydrog. Energy, 39(21), 10883, 2014
  29. Varma AK, Mondal P, J. Therm. Anal. Calorim., 124(1), 487, 2016
  30. El-Sayed SA, Mostafa ME, Waste Biomass Valorization, 6(3), 401, 2015
  31. Wang J, Zhao H, Waste Biomass Valorization, 6(4), 527, 2015
  32. Pradhan RR, Garnaik PP, Regmi B, Dash B, Dutta A, Biomass Conversion Biorefinery, 7, 237, 2017
  33. Malika A, Jacques N, Fatima B, Mohammed A, Biomass Conversion Biorefinery, 6(2), 161, 2016
  34. Ma Y, Wang J, Zhang Y, Biomass Conversion and Biorefinery, 1 (2017).
  35. Food and Agriculture Organization of the United Nations Website http://www.fao.org/home/en/.
  36. White JE, Catallo WJ, Legendre BL, J. Anal. Appl. Pyrolysis, 91(1), 1, 2011
  37. Miura K, Maki T, Energy Fuels, 12(5), 864, 1998
  38. Friedman HL, Polymer Symposia, 1964. vol 1. Wiley Online Library, pp. 183-195.
  39. Ozawa T, Bull. Chem. Soc. Jpn., 38(11), 1881, 1965
  40. Flynn JH, Wall LA, J. Res. Nat. Bur. Stand., 70(6), 487, 1966
  41. Yang HP, Yan R, Chen HP, Lee DH, Zheng CG, Fuel, 86(12-13), 1781, 2007
  42. Cepeliogullar O, Putun AE, J. Anal. Appl. Pyrolysis, 110, 363, 2014
  43. Abnisa F, Daud WMAW, Energy Conv. Manag., 87, 71, 2014
  44. Westerhout RW, Waanders J, Kuipers JA, Vanswaaij WP, Ind. Eng. Chem. Res., 36(6), 1955, 1997
  45. Murata K, Hirano Y, Sakata Y, Uddin MA, J. Anal. Appl. Pyrolysis, 65(1), 71, 2002
  46. Aguado R, Olazar M, Gaisan B, Prieto R, Bilbao J, Chem. Eng. J., 92(1-3), 91, 2003
  47. Zeng WR, Zhou YJ, Huo R, Yao B, Li YZ, Gaofenzi Cailiao Kexue yu Gongcheng/Polymer Materials Science Engineering, 22(5), 162 (2006).
  48. Meng A, Chen S, Long Y, Zhou H, Zhang Y, Li Q, Waste Manage., 46, 247, 2015
  49. Cheng J, Pan Y, Yao J, Wang X, Pan F, Jiang J, Journal of Loss Prevention in the Process Industries, 40, 139 (2016).
  50. Ozsin G, Putun AE, Waste Manage., 64, 315, 2017