Issue
Korean Journal of Chemical Engineering,
Vol.35, No.2, 421-427, 2018
Reduction of CO2 to CO via reverse water-gas shift reaction over CeO2 catalyst
CeO2 catalysts with different structure were prepared by hard-template (Ce-HT), complex (Ce-CA), and precipitation methods (Ce-PC), and their performance in CO2 reverse water gas shift (RWGS) reaction was investigated. The catalysts were characterized using XRD, TEM, BET, H2-TPR, and in-situ XPS. The results indicated that the structure of CeO2 catalysts was significantly affected by the preparation method. The porous structure and large specific surface area enhanced the catalytic activity of the studied CeO2 catalysts. Oxygen vacancies as active sites were formed in the CeO2 catalysts by H2 reduction at 400 °C. The Ce-HT, Ce-CA, and Ce-PC catalysts have a 100% CO selectivity and CO2 conversion at 580 °Cwas 15.9%, 9.3%, and 12.7%, respectively. The highest CO2 RWGS reaction catalytic activity for the Ce-HT catalyst was related to the porous structure, large specific surface area (144.9m2.g -1) and formed abundant oxygen vacancies.
[References]
  1. Centi G, Quadrelli EA, Perathoner S, Energy Environ. Sci., 6, 1711, 2013
  2. Zhou GL, Dai BC, Xie HM, Zhang GZ, Xiong K, Zheng XX, J. CO2 Utilization, 21, 292, 2017
  3. Ahmad H, Kamarudin SK, Minggu LJ, Kassim M, Renew. Sust. Energ. Rev., 43, 599, 2015
  4. Yoshihara J, Campbell CT, J. Catal., 161(2), 776, 1996
  5. Osaki T, Narita N, Horiuchi T, Masuda H, Suzuki K, Sugiyama T, J. Mol. Catal. A-Chem., 125, 63, 1997
  6. Park SW, Joo OS, Jung KD, Kim H, Han SH, Korean J. Chem. Eng., 17(6), 719, 2000
  7. Park SW, Joo OS, Jung KD, Kim H, Han SH, Appl. Catal. A: Gen., 211(1), 81, 2001
  8. Kim DH, Han SW, Yoon HS, Kim YD, J. Ind. Eng. Chem., 23, 67, 2015
  9. Imagawa H, Suda A, Yamamura K, Sun SH, J. Phys. Chem., 115, 1740, 2011
  10. Dai BC, Zhou GL, Ge SB, Xie HM, Jiao ZJ, Zhang GZ, Xiong K, Can. J. Chem. Eng., 95(4), 634, 2017
  11. Wang LC, Khazaneh MT, Widmann D, Behm RJ, J. Catal., 302, 20, 2013
  12. Jiang QQ, Zhou GL, Jiang ZX, Li C, Sol. Energy, 99, 55, 2014
  13. Goguet A, Shekhtman SO, Burch R, Hardacre C, Meunier E, Yablonsky GS, J. Catal., 237(1), 102, 2006
  14. Lu BW, Kawamoto K, Mater. Res. Bull., 53, 70, 2014
  15. Goguet A, Shekhtman SO, Burch R, Hardacre C, Meunier E, Yablonsky GS, J. Catal., 237(1), 102, 2006
  16. Goguet A, Meunier F, Breen JP, Burch R, Petch MI, Ghenciu AF, J. Catal., 226(2), 382, 2004
  17. Zhou GL, Lan H, Wang H, Xie HM, Zhang GZ, Zheng XX, J. Mol. Catal. A-Chem., 393, 279, 2014
  18. Zhou GL, Lan H, Yang XQ, Du QX, Xie HM, Fu M, Ceram. Int., 39, 3677, 2013
  19. Zhou G, Gui B, Xie H, Yang F, Chen Y, Chen S, Zheng X, J. Ind. Eng. Chem., 20(1), 160, 2014
  20. Djinovic P, Batista J, Pintar A, Catal. Today, 147S, S191 (2009).
  21. Qu ZP, Yu FL, Zhang XD, Wang Y, Gao JS, Chem. Eng. J., 229, 522, 2013
  22. Fu XC, Shen WX, Physical Chemistry, Fifth Ed., High education press, Beijing (2006).
  23. Lopez JM, Gilbank AL, Garcia T, Solsona B, Agouram S, Torrente-Murciano L, Appl. Catal. B: Environ., 174-175, 403, 2015
  24. Tana, Zhang ML, Li J, Li HJ, Li Y, Shen WJ, Catal. Today, 148(1-2), 179, 2009
  25. Karpenko A, Leppelt R, Cai J, Plzak V, Chuvilin A, Kaiser U, Behm RJ, J. Catal., 250(1), 139, 2007
  26. Choudhury B, Chetri P, Choudhury A, RSC Adv., 4, 4663, 2014
  27. Nolan M, Parker SC, Watson GW, Surf. Sci., 595, 223, 2005
  28. Meng LZ, Gong SL, He YB, Chemistry Organic Spectral Analysis, 3rd Ed., Wuhan University Press, Wuhan (2009).
  29. Kim SS, Park KH, Hong SC, Fuel Process. Technol., 108, 47, 2013
  30. Chen CS, Cheng WH, Lin SS, Chem. Commun., 18, 1770, 2001