Issue
Korean Journal of Chemical Engineering,
Vol.35, No.2, 409-420, 2018
Process optimization for selective hydrogenation of α-pinene over Ni/AlPO4
A new supported Ni/AlPO4 catalyst was synthesized and studied for the selective hydrogenation of α- pinene to prepare cis-pinane. The support was flaky morphology with orthorhombic phase and Ni was well dispersed. The surface area of the catalyst was 37.62m2·g -1 with a pore size of 2.83 nm. For the hydrogenation reaction, the performance of the catalyst was positively correlated with the surface area of support and loading content of Ni. Effects of hydrogenation condition were determined and the process was optimized by response surface methodology. The result suggested that the conversion was positively correlated to hydrogenation temperature, duration and catalyst dosage, while the selectivity showed a negative correlation to temperature and catalyst dosage. After optimization, 95.1% of selectivity was obtained under 94.8% of conversion at 405 K, 81 min and 2.28 wt% of catalyst.
[References]
  1. Semikolenov VA, Ilyna II, Simakova IL, Appl. Catal. A: Gen., 211(1), 91, 2001
  2. Wilderman PR, Shah MB, Jang HH, Stout CD, Halpert JR, J. Am. Chem. Soc., 135(28), 10433, 2013
  3. Audin E, Turkez H, Geyikoglu F, Biologia, 68, 1004, 2013
  4. Rezzi S, Bighelli A, Castola V, Casanova J, Ind. Crop. Prod., 21, 71, 2005
  5. Chouchi D, Gourgouillon D, Courel M, Vital J, da Ponte MN, Ind. Eng. Chem. Res., 40(12), 2551, 2001
  6. Comelli NA, Ponzi EN, Ponzi MI, Chem. Eng. J., 117(2), 93, 2006
  7. Sundaravel B, Babu CM, Vinodh R, Cha WS, Jang HT, J. Taiwan. Inst. Chem. Eng., 63, 157, 2016
  8. Kukhta NA, Vasilenko I, Kostjuk SV, Green Chem., 13, 2362, 2011
  9. Hou S, Xie C, Yu F, Yuan B, Yu S, RSC Adv., 6, 54806, 2016
  10. Hou SL, Wang XY, Huang CR, Xie CX, Yu ST, Catal. Lett., 146(3), 580, 2016
  11. Simakova IL, Solkina Y, Deliy I, Warna J, Murzin DY, Appl. Catal. A: Gen., 356(2), 216, 2009
  12. Yang X, Liu S, Xie C, Yu S, Liu F, Chin. J. Catal., 32, 643, 2011
  13. Canova LA, US Patent, 4,018,842 (1977).
  14. Ko SH, Chou TC, Ind. Eng. Chem. Res., 32, 1579, 1993
  15. Ko SH, Chou TC, Yang TJ, Ind. Eng. Chem. Res., 34(2), 457, 1995
  16. Zhang JH, Jiang LH, Wu SS, Wang HQ, Wang YM, CIESC J., 67, 2363, 2016
  17. Ren SB, Qiu JH, Wang CY, Xu BL, Fan YN, Chen Y, Chin. J. Inorg. Chem., 23, 1021, 2007
  18. Ren SB, Qiu JH, Wang CY, Xu BL, Fan YN, Chen Y, Chin. J. Catal., 28, 651, 2007
  19. Wang LL, Guo HQ, Chen XP, Huang YY, Ren L, Ding SF, Can. J. Chem. Eng., 93(10), 1770, 2015
  20. Wang L, Guo H, Chen X, Huang Y, Zhang P, React. Kinet. Mech. Cat., 114, 639, 2015
  21. Han H, Jiang LH, Wang YM, Huang TY, Wang HQ, Chem. Ind. Fore. Prod., 36, 92, 2016
  22. Wilson ST, Lok BM, Messina CA, Cannan TR, Flanigen EM, J. Am. Chem. Soc., 104, 1146, 1982
  23. Wang X, Wang F, Jiang S, Zhong SH, Chin. J. Catal., 32, 352, 2011
  24. Chakrabortty D, Ganguli J, Satyanarayana C, Microporous Mesoporous Mater., 137, 65, 2011
  25. Dai WL, Kong WB, Wu GJ, Li N, Li LD, Guan NJ, Catal. Commun., 12, 535, 2011
  26. Lee YJ, Kim YW, Viswanadham N, Jun KW, Bae JW, Appl. Catal. A: Gen., 374(1-2), 18, 2010
  27. Bhattacharjee S, Lee YR, Ahn WS, Korean J. Chem. Eng., 34(3), 701, 2017
  28. Liu Z, Wakihara T, Nishioka D, Oshima K, Takewaki T, Okubo T, Chem. Commun., 50, 2526, 2014
  29. Li K, Tian Z, Li X, Xu R, Xu Y, Wang L, Ma H, Wang B, Lin L, Angew. Chem.-Int. Edit., 51, 4397, 2012
  30. Delgado JA, Agueda VI, Uguina MA, Sotelo JL, Fernandez P, Adsorption, 19, 407, 2013
  31. Song XW, Li Y, Gan L, Wang ZP, Yu JH, Xu RR, Angew. Chem.-Int. Edit., 48, 314, 2009
  32. Shan X, Maw HP, Lu CW, Microsyst. Technol., 16, 1501, 2010
  33. Xu W, Huo L, Luo S, Zhang X, Zhao J, Hao Y, Ma Z, Int. J. Microstruc. Mat. Prop., 10, 296, 2015
  34. Pereira G, Lachenwitzer A, Munoz-Paniagua D, Kasrai M, Norton PR, Abrecht M, Gilbert P, Tribol. Lett., 23, 109, 2006
  35. Tang K, Yu J, Zhao Y, Liu Y, Wang X, Xu R, J. Mater. Chem., 16, 1741, 2006
  36. Wang Y, Li Y, Yan Y, Xu J, Guan B, Wang Q, Li J, Yu J, Chem. Commun., 49, 9006, 2013
  37. Chen JS, Pang WQ, Xu RR, Top. Catal., 9, 93, 1999
  38. Golubina EV, Lokteva ES, Erokhin AV, Veligzhanin AA, Zubavichus YV, Likholobov VA, Lunin VV, J. Catal., 344, 90, 2016
  39. Xia JW, He GY, Zhang LL, Sun XQ, Wang X, Appl. Catal. B: Environ., 180, 408, 2016
  40. Khalfaoui M, Knani S, Hachicha MA, Ben Lamine A, J. Colloid Interface Sci., 263(2), 350, 2003
  41. Liu YQ, Gao L, J. Am. Ceram. Soc., 86(10), 1651, 2003
  42. Wright SF, Dollimore D, Dunn JG, Alexander K, Thermochim. Acta, 421(1-2), 25, 2004
  43. Zhang Y, Chu W, Cao WM, Luo CR, Wen XG, Zhou KL, Plasma Chem. Plasma Process., 20(1), 137, 2000
  44. Hoffer BW, van Langeveld AD, Janssens JP, Bonne RLC, Lok CM, Moulijn JA, J. Catal., 192(2), 432, 2000
  45. Salminen E, Maki-Arvela P, Virtanen P, Salmi T, Mikkola JP, Top. Catal., 57, 1533, 2014
  46. Singh AK, Mukhopadhyay M, Korean J. Chem. Eng., 33(4), 1247, 2016
  47. Davoodi P, Ghoreishi SM, Hedayati A, Korean J. Chem. Eng., 34(3), 854, 2017
  48. Cao J, Wu Y, Jin Y, Yilihan P, Huang W, J. Taiwan. Inst. Chem. Eng., 45, 860, 2014
  49. Ahmed OU, Mjalli FS, Al-Wahaibi T, Al-Wahaibi Y, AlNashef IM, Ind. Eng. Chem. Res., 54(25), 6540, 2015
  50. Khataee AR, Karimi A, Soltani RDC, Safarpour M, Hanifehpour Y, Joo SW, Appl. Catal. A: Gen., 488, 160, 2014
  51. Smidt M, Kusic H, Juretic D, Stankov MN, Ukic S, Bolanca T, Rogosic M, Bozic AL, Ind. Eng. Chem. Res., 54(20), 5427, 2015