Issue
Korean Journal of Chemical Engineering,
Vol.35, No.2, 318-323, 2018
Simultaneous separation of three isoflavones on oligo-β-cyclodextrin substituted polystyrene-based medium and evaluation adsorption characteristics using AutoDock
The adsorption characteristics between three isoflavones in crude soybean sample and styrene-β-cyclodextrin (S-CD) were studied by molecular mechanics calculations with AutoDock. The discriminatory ability exhibited by S-CD against glycitin, daidzin, and genistin through the differences in the interaction energies and complex geometries could potentially serve for the chromatographic separation. The chromatographic elution order of the three analytes on oligo-β-cyclodextrin substituted polystyrene-based medium (PS-CDP) was predicted depending on the binding free energy values obtained from molecular docking simulations. The experimental results of chromatographic evaluation on PS-CDP were consistent with the simulation prediction. The three isoflavones in sample can be simultaneously separated in one-step under the optimized mobile phase, which consisted of methanol/0.1mM NH4AC=65.0/35.0 (v/v) by PS-CDP column chromatography. A glycitin purity of 95.1% with a recovery of approximate 86.3% was achieved by proper peak cutting, and that of daidzin and genistin was 95.8%, 95.4% and 96.2%, 95.7%, respectively.
[References]
  1. Barnes S, Grubbs C, Setchell KD, Carlson J, Prog. Clin. Biol. Res., 347, 239, 1990
  2. Kyle E, Neckers L, Takimoto C, Curt G, Bergan R, Mol. Pharmacol., 51, 193, 1997
  3. Polkowski K, Mazurek AP, Acta Pol. Pharm, 57, 135, 2000
  4. Popiolkiewicz J, Polkowski K, Skierski JS, Mazurek AP, Cancer Lett., 229, 67, 2005
  5. Ravindranath MH, Muthugounder S, Presser N, Viswanathan S, Adv. Exp. Med. Biol., 546, 121, 2004
  6. Magee PJ, Rowland IR, J. Nutr., 91, 513, 2004
  7. Jia NK, Yuan QP, Soybean Science, 23, 11, 2004
  8. Sun L, Wei ZC, Xu ZH, Chi JW, Food Sci., 23, 267, 2002
  9. Lee KJ, Row KH, Korean J. Chem. Eng., 23(5), 779, 2006
  10. Jankowiak L, van Avermaete I, Boom R, van der Goot AJ, Sep. Purif. Technol., 149, 479, 2015
  11. Cho SY, Lee YN, Park HJ, Food Chemistry, 117, 312, 2009
  12. Shi Y, Kong XZ, Zhang CM, Chen YM, Hua YF, Chem. Eng. J., 215, 113, 2013
  13. Yang L, Tan TW, Biochem. Eng. J., 40, 189, 2008
  14. Zhang HY, Feng W, Li C, Tan TW, J. Phys. Chem. B, 114(14), 4876, 2010
  15. Lipkowitz KB, J. Chromatogr. A, 906, 417, 2001
  16. Lipkowitz KB, Chem. Rev., 98(5), 1829, 1998
  17. Lv YQ, Tan TW, Process Biochemistry, 44, 1225, 2009
  18. Morris GM, Goodsell DS, Halliday RS, Huey R, Hart WE, Belew RK, Olson AJ, La Jolla, CA, U.S.A. (2007).
  19. Sanner MF, Huey R, Dallakyan S, Karnati S, Lindstrom W, Morris GM, Norledge B, Omelchenko A, Stoffler D, Vareille G, La Jolla, CA, U.S.A. (2007).
  20. Gasteiger J, Marsili M, Tetrahedron, 36, 3219, 1980
  21. Pirkle WH, Pochapsky TC, Chem. Rev., 89, 347, 1989
  22. Accounts Chem. Res., Lapcik O, Klejdus B, Kokoska L, Davidova M, Afandi K, Kuban V, Hampl R, Biochemical Systematics and Ecology, 33, 983 (2005).
  23. Hirakura K, Morita M, Nakajima K, Sugama K, Tajagi K, Niitsh K, Phytochemistry, 46, 921, 1997
  24. Park HJ, Moon JO, Lee KT, Jung WT, Oh ST, Lee HK, Phytochemistry, 51, 147, 1999
  25. Wang H, Nair MG, Strasburg GM, Booren AM, Gray JI, J. Agric. Food Chem., 47, 840, 1999