Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 298-302, 2018
Enhancement of thermal stability and chemical reactivity of phenolic resin ameliorated by nanoSiO2
Phenolic resin has unsatisfactory thermal stability owing to the poor anti-oxidation property of methylene and phenol groups. To overcome this defect, a series of phenolic resin modified by nanoSiO2 based on the tetraethoxysilane (TEOS) was successfully prepared via sol-gel method using phenol as solvent. The effect of nanoSiO2 on the structures and properties of phenolic resin/foam was investigated. TGA and DTG indicated that the initial decomposition temperature of PR-0.5 (TEOS accounted for 0.5% of phenolic resin) was 41.8 °C higher than the neat PR-0. DSC revealed that the peak temperature presented a parabolic shape with the dosage of the TEOS, its maximal value resting on the PR-0.5. FT-IR and XRD demonstrated that chemical crosslink was reacted between PR and nanoSiO2 hydrolyzed by the TEOS, forming new chemical bands. Reactivity analysis illustrated that the free phenol content and the hydroxymethyl group content changed sharply in PF-0.5, implying it has highest reactivity.
[References]
  1. Li XY, Wang ZZ, Wu LX, RSC Adv., 5, 99907, 2015
  2. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Nano Lett., 8, 902, 2008
  3. Zhao YH, Wu ZK, Bai SL, Compos. Pt. A-Appl. Sci. Manuf., 72, 200, 2015
  4. Zhao L, Sun X, Lei Z, Zhao J, Wu J, Li Q, Compos. Part B-Eng., 83, 317, 2015
  5. Cheng H, Xue H, Hong C, Zhang X, Compos. Sci. Technol., 140, 63, 2017
  6. Song SA, Yong SC, Kim SS, Compos. Sci. Technol., 103, 85, 2014
  7. Zhao YH, Zhang YF, Bai SL, Yuan XW, Compos. Part B-Eng., 94, 102, 2016
  8. Li S, Chen F, Zhang B, Luo Z, Li H, Zhao T, Polym. Degrad. Stabil., 133, 321, 2016
  9. Li H, Yao D, Fu Q, Liu L, Zhang Y, Yao X, Carbon, 52, 418, 2013
  10. Kobera L, Czernek J, Streckova M, Urbanova M, Abbrent S, Brus J, Macromolecules, 48(14), 4874, 2015
  11. Lin CT, Lee HT, Chen JK, Appl. Surf. Sci., 330, 1, 2015
  12. Wang S, Jing X, Wang Y, Si J, Polym. Degrad. Stabil., 99, 1, 2014
  13. Feng J, Chen L, Gu J, He Z, Yun J, Wang X, J. Polym. Res., 23, 1, 2016
  14. Sui X, Wang Z, Polym. Adv. Technol., 24, 593, 2013
  15. Zhang G, Shi M, Huang C, Huang Z, J. Macromol. Sci. B., 55, 810, 2016
  16. Li C, Wan J, Pan YT, Zhao PC, Fan H, Wang DY, ACS Sustain. Chem. Eng., 4, 3113, 2016
  17. Brus J, Spirkova M, Hlavata D, Strachota A, Macromolecules, 37(4), 1346, 2004
  18. Schutz MR, Sattler K, Deeken S, Klein O, Adasch V, Liebscher CH, Glatzel U, Senker J, Breu J, J. Appl. Polym. Sci., 117(4), 2272, 2010
  19. Roumeli E, Papadopoulou E, Pavlidou E, Vourlias G, Bikiaris D, Paraskevopoulos KM, Chrissafis K, Thermochim. Acta, 527, 33, 2012
  20. Lin Q, Yang G, Liu J, Rao J, Frontiers of Forestry in China, 1, 230, 2006
  21. Li H, Zhang Z, Ma X, Surf. Coat. Technol., 201, 5269, 2007
  22. Shi H, Liu F, Yang L, Han E, Prog. Org. Coat., 62, 359, 2008
  23. Gao XY, Zhu YC, Zhao X, Wang ZC, An DM, Ma YJ, Guan SA, Du YY, Zhou B, Appl. Surf. Sci., 257(10), 4719, 2011
  24. Li S, Han Y, Chen F, Luo Z, Li H, Zhao T, Polym. Degrad. Stabil., 124, 68, 2016
  25. Li Q, Chen L, Zhang J, Zheng K, Zhang X, Fang F, Polym. Eng. Sci., 55, 2783, 2016
  26. Periadurai T, Vijayakumar CT, Balasubramanian M, J. Anal. Appl. Pyrolysis, 89, 244, 2010
  27. Yuan J, Zhang Y, Wang Z, J. Appl. Polym. Sci., 132, 42590, 2015
  28. Arafa IM, Fares MM, Barham AS, Eur. Polym. J., 40, 1477, 2004
  29. Kissinger HE, Anal. Chem., 29, 1702, 1957
  30. Li S, Chen FH, Han Y, Zhou H, Li H, Zhao T, Mater. Chem. Phys., 165, 25, 2015
  31. Su MR, Wang ZX, Guo HJ, Li XH, Huang SL, Gan L, Adv. Powder Technol., 24(6), 921, 2013
  32. Ma YF, Wang JF, Xu YZ, Wang CP, Chu FX, J. Therm. Anal. Calorim., 114, 1143, 2013