Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 272-282, 2018
Improvement of capacitive deionization performance via using a Tiron-grafted TiO2 nanoparticle layer on porous carbon electrode
A novel ion-selective inorganic-carbon composited electrode was designed to improve the performance of a capacitive deionization (CDI) process. Disodium 4,5-dihydroxy-1,3-benzenedisulfonate (Tiron) was grafted on the surface of titania nanoparticles, and a thin titania layer with a thickness of 10-12 μm was formed on porous activatedcarbon (AC) electrode and used as the negative electrode in a CDI full cell. The resulting Tiron-grafted titania nanoparticles showed an excellent ion-exchange capacity (1.51meq/g). As a result, the Tiron-titania/AC composited electrode was found to have improved desalination properties in terms of specific adsorption capacity, specific adsorption rate and current efficiency compared with the pristine CDI electrode. Improved desalination performance was attributed to a reduction in co-ion expulsion effect by ion-exchangeable functional groups in Tiron-grafted titania. In addition, the improved desalination performance through the introduction of a porous layer of Tiron-grafted titania was similar to that of the conventional membrane capacitive deionization (MCDI) using an ion-exchange membrane. From the results obtained, it has been experimentally proven that the use of Tiron-grafted TiO2/AC composite as the negative elec trode in the CDI process is a simple and effective way to achieve high desalination performance.
[References]
  1. Welgemoed TJ, Schutte CF, Desalination, 183(1-3), 327, 2005
  2. Oren Y, Desalination, 228(1-3), 10, 2008
  3. Anderson MA, Cudero AL, Palma J, Electrochim. Acta, 55(12), 3845, 2010
  4. Porada S, Zhao R, van der Wal A, Presser V, Biesheuvel PM, Prog. Mater. Sci., 58(8), 1388, 2013
  5. Esfahani IJ, Rashidi J, Ifaei P, Yoo CK, Korean J. Chem. Eng., 33(2), 351, 2016
  6. Zhao R, Porada S, Biesheuvel PM, Van der Wal A, Desalination, 330, 35, 2013
  7. Suss ME, Porada S, Sun X, Bieheuvel PM, Yoon J, Presser V, Energy Environ. Sci., 8, 2296, 2015
  8. Lian C, Liu K, Van Aken KL, Gogotsi Y, Wesolowski DJ, Liu HL, Jiang DE, Wu JZ, ACS Energy Lett., 1, 21, 2016
  9. Huang ZH, Yang Z, Kang F, Inagaki M, J. Mater. Chem., 5, 470, 2017
  10. Wang M, Xu X, Liu Y, Li Y, Lu T, Pan L, Carbon, 108, 433, 2016
  11. Tsai YC, Doong RA, Desalination, 398, 171, 2016
  12. Moradi R, Karimi-Sabet J, Shariaty-niassar M, Amini Y, Korean J. Chem. Eng., 33(10), 2953, 2016
  13. Kim PH, Jung KY, RSC Adv., 6, 1686, 2016
  14. Jo N, Choi JH, Jung KY, J. Electrochem. Soc., 160(9), E84, 2013
  15. Zou L, Morris G, Qi D, Desalination, 225(1-3), 329, 2008
  16. Wang G, Qian BQ, Dong Q, Yang JY, Zhao ZB, Qiu JS, Sep. Purif. Technol., 103, 216, 2013
  17. Bian Y, Yang X, Liang P, Jiang Y, Zhang C, Huang X, Water Res., 85, 371, 2015
  18. Kim J, Peck DH, Lee B, Yoon SH, Jung DH, New Carbon Mater., 31, 378, 2016
  19. Xu P, Drewes JE, Heil D, Wang G, Water Res., 42, 2605, 2008
  20. Kumar R, Gupta SS, Katiyar S, Raman VK, Varigala SK, Pradeep T, Sharma A, Carbon, 99, 375, 2016
  21. Liu Y, Nie G, Pan L, Xu X, Sun Z, Chua DHC, Inorg. Chem. Front., 1, 249, 2014
  22. Li H, Liang S, Li J, He L, J. Mater. Chem., 1, 6335, 2013
  23. Li HB, Ma YL, Niu R, Sep. Purif. Technol., 171, 93, 2016
  24. Zhang H, Liang P, Bian Y, Jiang Y, Sun X, Zhang C, Huang X, Wei F, RSC Adv., 6, 58907, 2016
  25. Wen X, Zhang D, Yan T, Zhang J, Shi L, J. Mater. Chem., 1, 12334, 2013
  26. Yang ZY, Jin LJ, Lu GQ, Xiao QQ, Zhang YX, Jing L, Zhang XX, Yan YM, Sun KN, Adv. Funct. Mater., 24(25), 3917, 2014
  27. Yin HJ, Zhao SL, Wan JW, Tang HJ, Chang L, He LC, Zhao HJ, Gao Y, Tang ZY, Adv. Mater., 25(43), 6270, 2013
  28. Xu X, Pan L, Liu Y, Lu T, Sun Z, Chua DHC, Sci. Rep., 5, 8458, 2015
  29. Biesheuvel PM, Porada S, Levi M, Bazant MZ, J. Solid State Electrochem., 18, 1365, 2014
  30. Gao X, Landon J, Neathery JK, Liu KL, J. Electrochem. Soc., 160(9), E106, 2013
  31. Omosebi A, Gao X, Landon J, Liu K, ACS Appl. Mater. Interfaces, 6, 12640, 2014
  32. Biesheuvel PM, van der Wal A, J. Membr. Sci., 346(2), 256, 2010
  33. Zhao R, Biesheuvel PM, van der Wal A, Energy Environ. Sci., 5, 9520, 2012
  34. Lee JH, Choi JH, J. Membr. Sci., 409-410, 251, 2012
  35. Li H, Zaviska F, Liang S, Li J, He L, Yang HY, J. Mater. Chem., 2, 3484, 2014
  36. Liu P, Wang H, Yan T, Zhang J, Shi L, Zhang D, J. Mater. Chem., 4, 5303, 2016
  37. Jia BP, Zou LD, Chem. Phys. Lett., 548, 23, 2012
  38. Laxman K, Myint MTZ, Khan R, Pervez T, Dutta J, Water Desalination, 359, 64, 2015
  39. El-Deen AG, Boom RM, Kim HY, Duan H, Chan-Park MB, Choi JH, ACS Appl. Mater. Interfaces, 8, 25313, 2016
  40. Wu T, Wang G, Zhang F, Dong Q, Ren Q, Wang J, Qiu J, Water Res., 39, 30, 2016
  41. Qian B, Wang G, Ling Z, Dong Q, Wu T, Zhang X, Qiu J, Adv. Mater. Interfaces, 2, 150037, 2015
  42. Kim YJ, Choi JH, Water Res., 44, 990, 2010
  43. Kim JS, Choi JH, J. Membr. Sci., 355(1-2), 85, 2010
  44. Kim YJ, Choi JH, Water Res., 46, 6033, 2012
  45. Moochani M, Moghadassi A, Hosseini SM, Bagheripour E, Parvizian F, Korean J. Chem. Eng., 33(9), 2674, 2016
  46. Kim JS, Jeon YS, Rhim JW, Sep. Purif. Technol., 157, 45, 2016
  47. Gao X, Omosebi A, Holubowitch N, Liu A, Ruh K, Landon J, Liu K, Desalination, 399, 16, 2016
  48. Xu T, Hou WQ, Shen XH, Wu H, Li XC, Wang JT, Jiang ZY, J. Power Sources, 196(11), 4934, 2011
  49. Li H, Gao Y, Pan L, Zhang Y, Chen Y, Sun Z, Water Res., 42, 4923, 2008
  50. Kim YJ, Choi JH, Sep. Purif. Technol., 71(1), 70, 2010
  51. Kim T, Yoon J, RSC Adv., 5, 1456, 2015
  52. Zhang D, Yan T, Shi L, Peng Z, Wen X, Zhang J, J. Mater. Chem., 22, 14696, 2012
  53. Park BH, Choi JH, Electrochim. Acta, 55(8), 2888, 2010
  54. Singh A, Chandra A, Sci. Rep., 6, 25793, 2016
  55. Kim SK, Park HS, RSC Adv., 4, 47827, 2014