Issue
Korean Journal of Chemical Engineering,
Vol.35, No.1, 195-203, 2018
Zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a lab-scale bubble column reactor: Artificial intelligence modelling for determination of optimal operational parameters and energy requirements
The operational optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a bubble column reactor was performed by coupling genetic algorithm (GA) to an artificial neural network (ANN) model developed using experimental one-variable-at-a-time (OVAT) results. The effects of varying air flow rate (2- 5 vvm) and inoculum size (4 and 8%) for different incubation time (30-80 h) were evaluated. Volumetric power input (P/VL) and energy input (E) to the bubble column were then correlated with the ANN-GA optimized conditions. A maximum zeaxanthin production of 13.76±0.14mg/L was observed at 4 vvm using an inoculum size of 4% (v/v) after 60h of incubation in OVAT experiments with corresponding P/VL value of 231.57 W/m3 reflecting an energy consumption of 50.02 kJ during the fermentation period. The ANN based GA optimization predicted a maximum zeaxanthin production of 14.79mg/L at 3.507 vvm, 4% inoculum size and 55.83 h against the experimental production of 15.09±0.51mg/L corresponding to a P/VL value of 202.03 W/m3 reflecting to a significantly reduced energy input (40.01 kJ). The proposed OVAT based ANN-GA optimization approach can be used to simulate similar studies involving microbial fermentation in bioreactors.
[References]
  1. Ribaya-Mercado JD, Blumberg JB, J. Am. Coll. Nutr., 23, 567S, 2004
  2. Loane E, Nolan JM, O’Donovan O, Bhosale P, Bernstein PS, Beatty S, Surv. Ophthalmol., 53, 68, 2008
  3. Roberts RL, Green J, Lewis B, Clin. Dermatol., 27, 195, 2009
  4. Moeller SM, Jacques PF, Blumberg JB, J. Am. Coll. Nutr., 19, 522S, 2000
  5. Thawornwiriyanun P, Tanasupawat S, Dechsakulwatana C, Techkarnjanaruk S, Suntornsuk W, Appl. Biochem. Biotechnol., 167(8), 2357, 2012
  6. Ye VM, Bhatia SK, Biotechnol. Lett., 34(8), 1405, 2012
  7. Cheng YT, Yang CF, J. Taiwan Inst. Chem. Eng., 61, 270, 2016
  8. Berry A, Janssens D, Humbelin M, Jore JP, Hoste B, Cleenwerck I, Vancanneyt M, Bretzel W, Mayer AF, Lopez-Ulibarri R, Shanmugam B, Int. J. Syst. Evol. Microbiol., 53, 231, 2003
  9. Schocher AJ, Wiss O, US Patent, 3,891,504 (1975).
  10. Doran PM, Bioprocess engineering principles, Academic Press, London (1995).
  11. Nanou K, Roukas T, Papadakis E, Biochem. Eng. J., 54, 172, 2011
  12. Nanou K, Roukas T, Papadakis E, Biochem. Eng. J., 67, 203, 2012
  13. Stanbury PF, Whitaker A, Hall SJ, Principles of fermentation technology, Elsevier (2013).
  14. Hao LM, Xing XH, Li Z, Zhang JC, Sun JX, Jia SR, Qiao CS, Wu TY, Appl. Biochem. Biotechnol., 160(2), 621, 2010
  15. Dursun D, Dalgıc AC, Biocatal. Agric. Biotechnol., 7, 1, 2016
  16. Eryılmaz EB, Dursun D, Dalgıc AC, Biocatal. Agric. Biotechnol., 7, 224, 2016
  17. Pandey KR, Joshi C, Vakil BV, SpringerPlus, 5, 1654, 2016
  18. Kuo CH, Liu TA, Chen JH, Chang CMJ, Shieh CJ, Biocatal. Agric. Biotechnol., 3, 1, 2014
  19. Babaei AA, Khataee A, Ahmadpour E, Sheydaei M, Kakavandi B, Alaee Z, Korean J. Chem. Eng., 33(4), 1352, 2016
  20. Singh D, Kaur G, Bioprocess. Biosyst. Eng., 37, 1599, 2014
  21. Zafar M, Kumar S, Dhiman AK, Biocatal. Agric. Biotechnol., 1, 70, 2012
  22. Prabhu AA, Mandal B, Dasu VV, Korean J. Chem. Eng., 34(4), 1109, 2017
  23. Kundu P, Mishra IM, Desalination Water Treat., 57, 19713, 2016
  24. Huang SM, Kuo CH, Chen CA, Liu YC, Shieh CJ, Ultrason. Sonochem., 36, 112, 2017
  25. Ilbay Z, Sahin S, Buyukkabasakal K, Korean J. Chem. Eng., 31(9), 1661, 2014
  26. Kundu P, Paul V, Kumar V, Mishra IM, Chem. Eng. Res. Des., 104, 773, 2015
  27. Kundu P, Paul V, Kumar V, Mishra IM, Petrol. Sci. Technol., 34, 350, 2016
  28. Shokir EMEM, Al-Homadhi ES, Al-Mahdy O, El-Midany AAH, Korean J. Chem. Eng., 31(8), 1496, 2014
  29. Davoodi P, Ghoreishi SM, Hedayati A, Korean J. Chem. Eng., 34(3), 854, 2017
  30. Sajilata MG, Bule MV, Chavan P, Singhal RS, Kamat MY, Sep. Purif. Technol., 71(2), 173, 2010
  31. Joshi C, Singhal RS, Biocatal. Agric. Biotechnol., 8, 228, 2016
  32. Savic DS, Lazic ML, Veljkovic VB, Vrvic MM, Chem. Ind. Chem. Eng., 11, 59, 2005
  33. Hirasawa K, Tsubokura A, U.S. Patent, 8,853,460 (2014).
  34. Hirschberg J, Harker M, U.S. Patent, 5,935,808 (1999).
  35. Rosa-Putra S, Hemmerlin A, Epperson J, Bach TJ, Guerra LH, Rohmer M, FEMS Microbiol. Lett., 204, 347, 2001
  36. Ferreira V, Faber MDO, Mesquita SDS, Pereira N, Electron. J. Biotechnol., 13, 5, 2010
  37. Clark DS, Blanch HW, Biochemical Engineering, CRC Press (1997).
  38. Bhosale P, Larson AJ, Bernstein PS, J. Appl. Microbiol., 96(3), 623, 2004
  39. Verwaal R, Jiang Y, Wang J, Daran JM, Sandmann G, van den Berg JA, van Ooyen AJ, Yeast, 27, 983, 2010
  40. Doshi R, Nguyen T, Chang G, PNAS, 110, 7642, 2013
  41. Prabhu S, Rekha PD, Young CC, Hameed A, Lin SY, Arun AB, Appl. Biochem. Biotechnol., 171(4), 817, 2013
  42. Sandhya C, Sumantha A, Szakacs G, Pandey A, Process Biochem., 40(8), 2689, 2005