Issue
Korean Journal of Chemical Engineering,
Vol.34, No.12, 3220-3225, 2017
Preparation of WO3, BiVO4 and reduced graphene oxide composite thin films and their photoelectrochemical performance
Various thin films for photoelectrochemical (PEC) water splitting were prepared and their PEC performance was tested. The precursor solutions for WO3 and BiVO4 photocatalysts were synthesized by solution processes, and the graphene oxide (GO) was prepared by Tour’s method and was calcined and converted to reduced graphene oxide (rGO). The composite photocatalyst thin films of WO3, BiVO4, WO3/BiVO4 and WO3/BiVO4-rGO were prepared on fluorine doped tin oxide glass by spin coating and calcination processes and the PEC performances were analyzed for those photocatalyst layers. The controlled WO3/BiVO4 heterojunction layer showed better PEC performance than the WO3 or BiVO4 single layer by the combined effects of photocatalysts. The WO3/BiVO4-rGO film with the optimum concentration of rGO showed a noticeable increase in photocurrent density because of the increased electrical conductivity by rGO and reduced recombination rate in BiVO4 layer.
[References]
  1. Van De Krol R, Liang Y, Schoonman J, J. Mater. Chem., 18, 2311, 2008
  2. Liu X, Wang F, Wang Q, Phys. Chem. Chem. Phys., 14, 7894, 2012
  3. Bamwenda GR, Arakawa H, Appl. Catal. A: Gen., 210(1-2), 181, 2001
  4. Wang F, Di Valentin C, Pacchioni G, J. Phys. Chem., 116, 8901, 2012
  5. Hisatomi T, Kubota J, Domen K, Chem. Soc. Rev., 43, 7520, 2014
  6. Ng YH, Iwase A, Kudo A, Amal R, J. Phys. Chem. Lett., 1, 2607, 2010
  7. Pathak P, Gupta S, Grosulak K, Imahori H, Subramanian V, J. Phys. Chem., 119, 7543, 2015
  8. Ding JR, Kim KS, AIChE J., 62(2), 421, 2016
  9. Kim JY, Magesh G, Youn DH, Jang JW, Kubota J, Domen K, Lee JS, Sci. Rep., 3, 1, 2013
  10. Qin Z, Tian H, Su T, Ji H, Guo Z, RSC Adv., 6, 52665, 2016
  11. Su TM, Tian H, Qin ZZ, Ji HB, Appl. Catal. B: Environ., 202, 364, 2017
  12. Zaleska A, Recent Patents Eng., 2, 157, 2008
  13. Moniz SJA, Shevlin SA, Martin DJ, Guo ZX, Tang J, Energy Environ. Sci., 8, 731, 2015
  14. Wang H, Zhang L, Chen Z, Hu J, Li S, Wang Z, Liu J, Wang X, Chem. Soc. Rev., 43, 5234, 2014
  15. Low J, Yu J, Jaroniec M, Wageh S, Al-Ghamdi AA, Adv. Mater., 29, 1, 2017
  16. Chatchai P, Murakami Y, Kishioka SY, Nosaka AY, Nosaka Y, Electrochim. Acta, 54(3), 1147, 2009
  17. Chatchai P, Kishioka SY, Murakami Y, Nosaka AY, Nosaka Y, Electrochim. Acta, 55(3), 592, 2010
  18. Su J, Guo L, Bao N, Grimes CA, Nano Lett., 11, 1928, 2011
  19. Hong SJ, Lee S, Jang JS, Lee JS, Energy Environ. Sci., 4, 1781, 2011
  20. Bell NJ, Ng YH, Du A, Coster H, Smith SC, Amal R, J. Phys. Chem., 115, 6004, 2011
  21. Luo QP, Yu XY, Lei BX, Chen HY, Kuang DB, Su CY, J. Phys. Chem., 116, 8111, 2012
  22. Guo J, Li Y, Zhu S, Chen Z, Liu Q, Zhang D, Moon WJ, Song DM, RSC Adv., 2, 1356, 2012
  23. Meng FK, Li JT, Cushing SK, Bright J, Zhi MJ, Rowley JD, Hong ZL, Manivannan A, Bristow AD, Wu NQ, Acs Catal., 3, 746, 2013
  24. Geim AK, Novoselov KS, Nat. Mater., 6(3), 183, 2007
  25. Marcano DC, Kosynkin DV, Berlin JM, Sinitskii A, Sun Z, Slesarev A, Alemany LB, Lu W, Tour JM, ACS Nano., 4, 4806, 2010
  26. Biswas SK, Baeg JO, Moon SJ, Kong K, So WW, J. Nanopart. Res., 14, 667, 2012
  27. Zhang HL, Yang JQ, Li D, Guo W, Qin Q, Zhu LJ, Zheng WJ, Appl. Surf. Sci., 305, 274, 2014
  28. Kudo A, Omori K, Kato H, J. Am. Chem. Soc., 121(49), 11459, 1999
  29. Dong P, Xi X, Zhang X, Hou G, Guan R, Materials, 9, 2016
  30. Huang NM, Lim HN, Chia CH, Yarmo MA, Muhamad MR, Int. J. Nanomedicine., 6, 3443, 2011
  31. Sayama K, Nomura A, Arai T, Sugita T, Abe R, Yanagida M, Oi T, Iwasaki Y, Abe Y, Sugihara H, J. Phys. Chem. B, 11352, 110, 2006