Issue
Korean Journal of Chemical Engineering,
Vol.34, No.12, 3208-3213, 2017
Feasibility study on the differentiation between engineered and natural nanoparticles based on the elemental ratios
To understand the fate and exposure of engineered nanoparticles (ENPs) to environmental media, it is important to identify ENPs in the natural occurring nanoparticles (NNPs). Although nanomaterials have unique physical properties such as uniform particle size, hierarchical nanostructure, well-defined crystalline structure, and high surface area, compared to bulk materials, these properties are not suitable references to differentiate between ENPs and NNPs. Therefore, the identification and quantification of ENPs pose a big challenge to analysis. Herein, we did a feasibility study to distinguish between ENPs and NNPs based on the elemental ratio of target elements (Ti and Zn) to background elements (Fe and Al). Morphologies, particle size, and elemental analysis for 12 NNPs, 4 ENPs, and 3 NPs contained in consumer products were conducted. NPs were extracted from raw materials via density gradient ultracentrifugation and alkaline digestion. In a logarithm plot for the elemental ratio of {Ti+Zn} to {Ti/Zn}/{Fe+Al} and ternary plot of {Ti+Zn}, Fe, and Al ions for all samples, ENPs have a distinct contrast with NNPs. Therefore, it is expected that the suggested analysis for elemental ratio could be a preliminary screening tool to differentiate between ENPs and NNPs.
[References]
  1. Montano MD, Lowry GV, von der Kammer F, Blue J, Ranville JF, Environ. Chem., 11, 351, 2014
  2. Nowack B, Bucheli TD, Environ. Pollut., 150, 50, 2007
  3. Hong JS, Kim S, Lee SH, Jo E, Lee B, Yoon J, Eom IC, Kim HM, Kim P, Choi K, Lee MY, Seo YR, Kim Y, Lee Y, Choi J, Park K, Nanotoxicology, 8, 349, 2014
  4. Bae E, Lee BC, Kim Y, Choi K, Yi J, Korean J. Chem. Eng., 30(2), 364, 2013
  5. Bernhardt ES, Colman BP, Hochella MF, Cardinale BJ, Nisbet RM, Richardson CJ, Yin L, J. Environ. Qual., 39, 1, 2010
  6. Park EJ, Kim H, Kim Y, Yi J, Choi K, Park K, Toxicol., 275, 65, 2010
  7. Sharma VK, Filip J, Zboril R, Varma RS, Chem. Soc. Rev., 44, 8410, 2015
  8. Znaker H, Schierz A, Annu. Rev. Anal. Chem., 5, 107, 2012
  9. Gulson B, Wong H, Environ. Health Perspect., 114, 1486, 2006
  10. Lowry GV, Gregory KB, Apte SC, Lead JR, Environ. Sci. Technol., 46, 6893, 2012
  11. Abd El-Rahman M, El-Khadragy MF, Abd-El Hay H, Gab-Allah DM, J. Hazard. Mater., 186(2-3), 1527, 2011
  12. Sim JH, Umh HN, Shin HH, Sung HK, Oh SY, Lee BC, Selvaraj R, Kim Y, J. Ind. Eng. Chem., 20(5), 3157, 2014
  13. Park S, Kim Y, J. Ind. Eng. Chem., 41, 62, 2016
  14. Kwak JY, Choi JB, J. Miner. Soc. Korea, 27, 197, 2014
  15. Chen DH, Caruso RA, Adv. Funct. Mater., 23(11), 1356, 2013
  16. Park S, Selvaraj R, Meetani MA, Kim Y, J. Ind. Eng. Chem., 45, 206, 2017
  17. Trouiller B, Reliene R, Westbrook A, Solaimani P, Schiestl RH, Cancer Res., 69, 8784, 2009
  18. Lee J, Kim J, Shin Y, Ryu J, Eom IC, Lee JS, Kim Y, Kim P, Choi KH, Lee BC, Ecotox. Environ. Safe., 104, 9, 2014
  19. Song U, Shin M, Lee G, Roh J, Kim Y, Lee EJ, Biol. Trace Elem. Res., 155, 93, 2013
  20. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC, Nat. Nanotechnol., 1(1), 60, 2006
  21. Lu YC, Wang LL, Wang DJ, Xie TF, Chen LP, Lin YH, Mater. Chem. Phys., 129(1-2), 281, 2011
  22. Park S, Park J, Selvarjay R, Kim Y, J. Ind. Eng. Chem., 31, 269, 2015
  23. Pal M, Serrano JG, Santiago P, Pal U, J. Phys. Chem., 111, 96, 2007
  24. Gondikas AP, von der Kammer F, Reed RB, Wagner S, Ranville JF, Hofmann T, Environ. Sci. Technol., 48, 5415, 2014
  25. Bartov G, Deonarine A, Johnson TM, Ruhl L, Vengosh A, Hsu-Kim H, Environ. Sci. Technol., 47, 2092, 2013
  26. Klaines SJ, Koelmans AA, Horne N, Carley S, Handy RD, Kapustka L, Nowack B, von der Kammer F, Environ. Toxicol. Chem., 31, 3, 2012