Issue
Korean Journal of Chemical Engineering,
Vol.34, No.12, 3200-3207, 2017
Plasmon-enhanced ZnO nanorod/Au NPs/Cu2O structure solar cells: Effects and limitations
Cu-based compounds can be a good candidate for a low cost solar cell material. In particular, CuxO (x : 1- 2) has a good visible light absorbing bandgap at 1-2 eV. As for using nanostructures in solar cell applications, metal nanoparticle-induced localized plasmon resonance is a promising way to increase light absorbance, which can help improve the efficiency of solar cells. We fabricated ZnO nanorod/Au nanoparticles/Cu2O nanostructures to study their solar cell performance. ZnO nanorods and Cu2O layer were synthesized by the electrodeposition method. Size-controlled Au nanoparticles were deposited using E-beam evaporator for localized surface plasmon resonance (LSPR) effect. By inserting Au plasmon nanoparticles and annealing Au NPs in solar cells, we could tune the maximum incident photon-to-current efficiency wavelength. However, the potential well formed by Au NP at the ZnO/Cu2O junction leads to charge-trapping, based on the constructed electronic band analysis. LSPR-induced hot carrier generation is proposed to promote carrier transport further in the presence of Au NPs.
[References]
  1. Kamat PV, J. Phys. Chem., 111, 2834, 2007
  2. Loferski JJ, J. Appl. Phys., 27, 777, 1956
  3. Wadia C, Alivisatos AP, Kammen DM, Environ. Sci. Technol., 43, 2072, 2009
  4. Ergen O, Gibb A, Vazquez-Mena O, Regan WR, Zettl A, Appl. Phys. Lett., 106, 103904, 2015
  5. Mittiga A, Salza E, Sarto F, Tucci M, Vasanthi R, Appl. Phys. Lett., 88, 163502, 2006
  6. Chen X, Lin P, Yan X, Bai Z, Yuan H, Shen Y, Liu Y, Zhang G, Zhang Z, Zhang Y, ACS Appl. Mater. Interf, 7, 3216, 2015
  7. Musselman KP, Wisnet A, Iza DC, Hesse HC, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L, Adv. Mater., 22(35), E254, 2010
  8. Tsin F, Venerosy A, Vidal J, Collin S, Clatot J, Lombez L, Paire M, Borensztajn S, Broussillou C, Grand PP, Scientific Reports, 5 (2015).
  9. Garine G, Fernando E, Carlos JP, Ricardo EM, Francisco M, Dietmar L, Jose RRB, Enrique AD, J. Phys. D-Appl. Phys., 45, 245301, 2012
  10. Mirtchev P, Liao K, Jaluague E, Qiao Q, Tian Y, Varela M, Burch KS, Pennycook SJ, Perovic DD, Ozin G, J. Mater. Chem., 2, 8525, 2014
  11. Yuhas BD, Yang PD, J. Am. Chem. Soc., 131(10), 3756, 2009
  12. Luo J, Steier L, Son MK, Schreier M, Mayer MT, Gratzel M, Nano Lett., 16, 1848, 2016
  13. Liu Q, Sandgren E, Barnhart M, Zhu R, Huang G, Photonics, 2, 893, 2015
  14. Abd-Ellah M, Thomas JP, Zhang L, Leung KT, Sol. Energy Mater. Sol. Cells, 152, 87, 2016
  15. Mattox TM, Ye XC, Manthiram K, Schuck PJ, Alivisatos AP, Urban JJ, Adv. Mater., 27(38), 5830, 2015
  16. Ren S, Wang B, Zhang H, Ding P, Wang Q, ACS Appl. Mater. Interfaces, 7, 4066, 2015
  17. Sriram M, Zong K, Vivekchand S, Gooding JJ, Sensors, 15, 25774, 2015
  18. Gao Y, Jin F, Su Z, Zhao H, Luo Y, Chu B, Li W, Organic Electronics, 39, 71, 2016
  19. Yen YC, Chen PH, Chen JZ, Chen JA. Lin KJ, ACS Appl. Mater. Interfaces, 7, 1892, 2015
  20. Ahn S, Nardes AM, Rourke D, van de Lagemaat J, Kopidakis N, Park W, The effect of infrared sensitizer (presentation recording). In, 2015; 95620D-95620D-95621.
  21. Ievskaya Y, Hoye R, Sadhanala A, Musselman K, MacManus- Driscoll J, Sol. Energy Mater. Sol. Cells, 135, 43, 2015
  22. Abdelfatah M, Ledig J, El-Shaer A, Wagner A, Marin-Borras V, Sharafeev A, Lemmens P, Mosaad MM, Waag A, Bakin A, Sol. Energy Mater. Sol. Cells, 145, 454, 2016
  23. Shinagawa T, Chigane M, Tani J, Izaki M, In:Meeting Abstracts: The Electrochemical Society, 2016; 1636-1636.
  24. Jeong SS, Mittiga A, Salza E, Masci A, Passerini S, Electrochim. Acta, 53(5), 2226, 2008
  25. Cui J, Gibson UJ, J. Phys. Chem., 114, 6408, 2010
  26. Musselman KP, Marin A, Wisnet A, Scheu C, MacManus-Driscoll JL, Schmidt-Mende L, Adv. Funct. Mater., 21(3), 573, 2011
  27. Perng DC, Hong MH, Chen KH, Chen KH, J. Alloy. Compd., 695, 549, 2017
  28. Dong H, Wu Z, El-Shafei A, Xia B, Xi J, Ning S, Jiao B, Hou X, J. Mater. Chem., 3, 4659, 2015
  29. Liu GQ, Liu ZQ, Chen YH, Huang K, Li L, Tang FL, Gong LX, Hu Y, Zhang XN, Optik - International Journal for Light and Electron Optics, 124, 5124 (2013).
  30. Lee YK, Jung CH, Park J, Seo H, Somorjai GA, Park JY, Nano Lett., 11, 4251, 2011
  31. Jia K, Bijeon JL, Adam PM, Ionescu RE, Plasmonics, 8, 143, 2013
  32. Nakano Y, Saeki S, Morikawa T, Appl. Phys. Lett., 94, 022111, 2009
  33. Viezbicke BD, Patel S, Davis BE, Birnie DP, Physica Status Solidi (b), 252, 1700, 2015
  34. Honsberg C, Bowden S, ORG. (access April-June 2013) http:// pveducation.org/pvcdrom/properties-of-sunlight/sun-position-calculator (2014).
  35. Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP, Phys. Rev. B, 28, 1965, 1983
  36. Eom K, Kim S, Lee D, Seo H, RSC Adv, 5, 103803, 2015
  37. Santoni A, Biccari F, Malerba C, Valentini M, Chierchia R, Mittiga A, J. Phys. D-Appl. Phys., 46, 175101, 2013
  38. Yoo IH, Kalanur SS, Lee SY, Eom K, Jeon H, Seo H, RSC Adv., 6, 82900, 2016
  39. Platzer-Bjorkman C, Frisk C, Larsen JK, Ericson T, Li SY, Scragg JJS, Keller J, Larsson F, Torndahl T, Appl. Phys. Lett., 107, 243904, 2015
  40. Hao X, Sun K, Yan C, Liu F, Huang J, Pu A, et al., In:Photovoltaic Specialists Conference (PVSC), 2016 IEEE 43rd: IEEE, 2016; 2164-2168.
  41. Zheng X, Chen B, Yang M, Wu C, Orler B, Moore RB, et al., ACS Energy Lett., 1, 424, 2016
  42. Yoon K, Hyun JK, Connell JG, Amit I, Rosenwaks Y, Lauhon LJ, Nano Lett., 13, 6183, 2013