Issue
Korean Journal of Chemical Engineering,
Vol.34, No.12, 3102-3110, 2017
Multilateral approaches for investigation of particle stickiness of coal ash at low temperature fouling conditions
Particle stickiness is a key parameter for increasing ash deposition in gasification process. We conducted multilateral investigations to evaluate particle stickiness of coal ash at low temperature fouling conditions through Watt and Fereday’s viscosity model, dilatometry (DIL) and laser flash apparatus (LFA) technique. Seventeen coals were employed for ash deposition experiments under gasification condition through drop tube furnace (DTF). The low viscosity not only led to increasing ash deposition behavior, but also increasing the particle size of deposited ash. From DIL analysis, the ash sintering behavior increased with increasing temperature due to increase of particle stickiness. The high amount of Fe2O3, CaO and MgO components resulted in low sintering temperature and high reduction of physical length. Through LFA analysis, the thermal conductivity increased with increasing temperature, because of increasing particle stickiness. In addition, its value was correlated with the propensity of common fouling indices.
[References]
  1. Li Feng-Hai, Ma Xiu-Wei, Guo Qian-Qian, Fan Hong-Li, Xu Mei-Ling, Liu Qing-Hua, Fang Yi-Tian, Fuel Process. Technol., 152, 124, 2016
  2. Wu Xiaojiang, Zhang Xiang, Dai Baiqian, Xu Xueyuan, Zhang Jianwen, Zhang Lian, Fuel Process. Technol., 152, 176, 2016
  3. Dai BQ, Wu XJ, De Girolamo A, Zhang L, Fuel, 139, 720, 2015
  4. Walsh PW, Energy Fuels, 6, 709, 1992
  5. Xu LH, Namkung H, Kwonc HB, Kim HT, J. Ind. Eng. Chem., 15(1), 98, 2009
  6. Singer JG, Combustion fossil power systems, in: Combustion Engineering inc, 3rd Ed., Rand McNally, New York (1981).
  7. Su S, Pohl JH, Holcombe D, Fuel, 82(13), 1653, 2003
  8. Vargas S, Frandsen FJ, Dam-Johansen K, Prog. Energy Combust. Sci., 27(3), 237, 2001
  9. Lin SJ, Ding L, Zhou ZJ, Yu GS, Fuel, 186, 656, 2016
  10. Ni JJ, Zhou ZJ, Yu GS, Liang QF, Wang FC, Ind. Eng. Chem. Res., 49(23), 12302, 2010
  11. Namkung H, Hu XF, Kim HT, Wang FC, Yu GS, Fuel Process. Technol., 149, 195, 2016
  12. Grillot JM, Icart G, Exp. Therm. Fluid Sci., 14, 442, 1997
  13. Muller-Steinhagen H, Reif F, Epstein N, Watkinson AP, Can. J. Chem. Eng., 66, 42, 1988
  14. Barroso J, Ballester J, Ferrer LM, Jimenez S, Fuel Process. Technol., 87(8), 737, 2006
  15. Ma ZH, Iman F, Lu PS, Sears R, Kong LB, Rokanuzzaman AS, McCollor DP, Benson SA, Fuel Process. Technol., 88(11-12), 1035, 2007
  16. Strandstrom K, Mueller C, Hupa M, Fuel Process. Technol., 88(11-12), 1053, 2007
  17. Li S, Wu Y, Whitty KJ, Energy Fuels, 24, 1868, 2010
  18. Li SH, Whitty KJ, Energy Fuels, 23, 1998, 2009
  19. Namkung H, Xu LH, Kim CH, Yuan XZ, Kang TJ, Kim HT, Fuel Process. Technol., 141, 82, 2016
  20. Abd-Elhady MS, Clevers SH, Adriaans TNG, Rindt CCM, Wijers JG, van Steenhoven AA, Int. J. Heat Mass Transf., 50(1-2), 196, 2007
  21. Pan YD, Si FQ, Xu ZG, Romero CE, Powder Technol., 210(2), 150, 2011
  22. Raask E, J. Thermal Anal., 16, 91, 1979
  23. Raask E, Coal ash sintering model and the rate measurements, Central Electricity Research Laboratories, Surrey, UK, 145 (1982).
  24. Hu H, Zhou K, Meng K, Song L, Lin Q, Energies, 10, 242, 2017
  25. Pang CH, Hewakandamby B, Wu T, Lester E, Fuel, 103, 454, 2013
  26. Wall TF, Bhattacharya SP, Zhang DK, Gupta RP, He X, Prog. Energy Combust. Sci., 19, 487, 1993
  27. Robinson AL, Buckley SG, Baxter LL, Energy Fuels, 15(1), 66, 2001
  28. Al-Otoom AY, Bryant GW, Elliott LK, Skrifvars BJ, Hupa M, Wall TF, Energy Fuels, 14(1), 227, 2000
  29. Bang JW, Lee YJ, Shin DG, Kim Y, Kim SR, Baek CS, Kwon WT, J. Korean Ceram. Soc., 53, 659, 2016
  30. Michot A, Smith DS, Degot S, Gault C, J. Eur. Ceram. Soc., 28, 2639, 2008
  31. Bourret J, Michot A, Tessier-Doyen N, Nait-Ali B, Pennec F, Alzina A, Vicente J, Peyratout CS, Smith DS, J. Am. Ceram. Soc., 97(3), 938, 2014
  32. Watt JD, Fereday F, J. Inst. Fuel, 42, 99, 1969
  33. Namkung H, Xu LH, Kang TJ, Kim DS, Kwon HB, Kim HT, Appl. Energy, 102, 1246, 2013
  34. Namkung H, Xu LH, Shin WC, Kang TJ, Kim HT, Fuel, 117, 1274, 2014
  35. Namkung H, Kang TJ, Xu LH, Jeon YS, Kim HT, Korean J. Chem. Eng., 29(4), 464, 2012
  36. Senior CL, Srinivasachar S, Energy Fuels, 9(2), 277, 1995
  37. Raask E, Mineral impurities in coal combustion, Behavior, Problem and Remedial measure, Hemisphere Publishing, Washington DC (1985).
  38. Al-Otoom AY, Elliott LK, Wall TF, Moghtaderi B, Energy Fuels, 14(5), 994, 2000
  39. http://dspace.mit.edu/handle/1721.1/27224 (access: Oct. 2, 2016).
  40. Bryers RW, in: Gupta RP, Wall TF, Baxter LL(Eds.), pp. 105-131, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).
  41. German RM, Powder metallurgy science, 2nd Ed., Princeton, New Jersey (1994).
  42. Gupta RP, Wall TF, Baxter LL, in: Gupta RP, Wall TF, Baxter LL(Eds.), pp. 65-84, The Impact of Mineral Impurities in Solid Fuel Combustion, Kluwer Academic Press, New York (1999).
  43. WALL TF, BHATTACHARYA SP, BAXTER LL, RICHARDS G, HARB JN, Fuel Process. Technol., 44(1-3), 143, 1995
  44. Anderson DW, Viskanta R, Incropera FP, J. Eng. Gas Turbines Power, 109, 215, 1987
  45. Mills KC, Rhine JM, Fuel, 68, 904, 1989
  46. Rezaei HR, Gupta RP, Bryant GW, Hart JT, Liu GS, Bailey CW, Wall TF, Miyamae S, Makino K, Endo Y, Fuel, 79, 1697, 2000
  47. http://www.coaltech.com.au/LinkedDocuments/Slagging%20&%20Fouling.pdf (access : Oct. 10, 2016).