Issue
Korean Journal of Chemical Engineering,
Vol.34, No.12, 3092-3101, 2017
A reaction kinetic study of CO2 gasification of petroleum coke, coals and mixture
Characteristics of Char-CO2 gasification were compared in the temperature range of 1,100-1,400 °C using a thermogravimetric analyzer (TGA) for petroleum coke, coal chars and mixed fuels (Petroleum coke/coal ratios: 0, 0.25, 0.5, 0.75, 1). The results showed that reaction time decreased with increasing gasification temperature, BET surface area and alkali index of coal. Mixed fuels composed of petroleum coke/coal exhibited reduced activation energies. Modified volumetric reaction model and shrinking core model might be suitably matched with experimental data depending on coal type and petroleum coke/coal ratio. Rate equations were suggested by selecting gas-solid reaction rate models for each sample that could simulate CO2 gasification behavior.
[References]
  1. Lee SH, Park ST, Lee R, Hwang JH, Sohn JM, Korean J. Chem. Eng., 33(12), 3523, 2016
  2. Dupont C, Nocquet T, Da Costa JA, Verne-Tournon C, Bioresour. Technol., 102(20), 9743, 2011
  3. Bu CS, Gomez-Barea A, Chen XP, Leckner B, Liu DY, Pallares D, Lu P, Appl. Energy, 177, 247, 2016
  4. Roberts DG, Harris DJ, Energy Fuels, 14(2), 483, 2000
  5. Zou JH, Zhou ZJ, Wang FC, Zhang W, Dai ZH, Liu HF, Yu ZH, Chem. Eng. Process., 46(7), 630, 2007
  6. Edreis EMA, Luo G, Li A, Xu C, Yao H, Energy Convers. Manage., 79, 355, 2014
  7. Park JH, Kim JS, Korean Chem. Eng. Res., 54(1), 1, 2016
  8. Yoon SJ, Choi YC, Lee SH, Lee JG, Korean J. Chem. Eng., 24(3), 512, 2007
  9. Murthy BN, Sawarkar AN, Deshmukh NA, Mathew T, Joshi JB, Can. J. Chem. Eng., 92(3), 441, 2014
  10. Fermoso J, Arias B, Plaza MG, Pevida C, Rubiera F, Pis JJ, Garcia-Pena F, Casero P, Fuel Process. Technol., 90(7-8), 926, 2009
  11. Lee SH, Yoon SJ, Ra HW, Il Son Y, Hong JC, Lee JG, Energy, 35(8), 3239, 2010
  12. Zhao CS, Lin LS, Pang KL, Xiang WG, Chen XP, Fuel Process. Technol., 91(8), 805, 2010
  13. Huo W, Zhou ZJ, Chen XL, Dai ZH, Yu GS, Bioresour. Technol., 159, 143, 2014
  14. Jayaraman K, Gokalp I, Appl. Therm. Eng., 80, 10, 2015
  15. Clements BR, Zhuang Q, Pomalis R, Wong J, Campbell D, Fuel, 97, 315, 2012
  16. Edreis EMA, Luo GQ, Li AJ, Chao C, Hu HY, Zhang S, Gui B, Xiao L, Xu K, Zhang PG, Yao H, Bioresour. Technol., 136, 595, 2013
  17. Goyal A, Pushpavanam S, Voolapalli RK, Fuel Process. Technol., 91(10), 1296, 2010
  18. Gong S, Zhu X, Kim Y, Song B, Yang W, Moon W, Byoun Y, Korean Chem. Eng. Res., 48(1), 80, 2010
  19. Timpe RC, Sears RE, Montgomery GG, Prepr. Pap., Am. Chem. Soc., Div. Fuel Chem., 32 (1987).
  20. Ballal G, Girish N, Amundson R, Chem. Eng. Sci., 44, 1763, 1989
  21. Dutta S, Wen CY, Ind. Eng. Chem. Proc. Dev., 16 (1977).
  22. Nagpal S, Sarkar TK, Sen R, Fuel Process. Technol., 86(6), 617, 2005
  23. Zhang LX, Huang JJ, Fang YT, Wang Y, Energy Fuels, 20(3), 1201, 2006
  24. Irfan MF, Usman MR, Kusakabe K, Energy, 36(1), 12, 2011
  25. Kim SK, Park CY, Park JY, Lee S, Rhu JH, Han MH, Yoon SK, Rhee YW, J. Ind. Eng. Chem., 20(1), 356, 2014
  26. Kim SK, Park JY, Lee DK, Hwang SC, Lee SH, Rhee YW, J. Energy Eng., 142 (2015), DOI:10.1061/(ASCE)EY.1943-7897.0000294.