Issue
Korean Journal of Chemical Engineering,
Vol.34, No.12, 3085-3091, 2017
CO and CO2 methanation over Ni catalysts supported on alumina with different crystalline phases
The effect of alumina crystalline phases on CO and CO2 methanation was investigated using alumina-supported Ni catalysts. Various crystalline phases, such as α-Al2O3, θ-Al2O3, δ-Al2O3, η-Al2O3, γ-Al2O3, and κ-Al2O3, were utilized to prepare alumina-supported Ni catalysts via wet impregnation. N2 physisorption, H2 chemisorption, temperature- programmed reduction with H2, CO2 chemisorption, temperature-programmed desorption of CO2, and X-ray diffraction were employed to characterize the catalysts. The Ni/θ-Al2O3 catalyst showed the highest activity during both CO and CO2 methanation at low temperatures. CO methanation catalytic activity appeared to be related to the number of Ni surface-active sites, as determined by H2-chemisorption. During CO2 methanation, Ni dispersion and the CO2 adsorption site were found to influence catalytic activity. Selective CO methanation in the presence of excess CO2 was performed over Ni/γ-Al2O3 and Ni/δ-Al2O3; these substrates proved more active for CO methanation than for CO2 methanation.
[References]
  1. Ronsch S, Schneider J, Matthischke S, Schluter M, Gotz M, Lefebvre J, Prabhakaran P, Bajohr S, Fuel, 166, 276, 2016
  2. Gotz M, Lefebvre J, Mors F, Koch AM, Graf F, Bajohr S, Reimert R, Kolb T, Renew. Energy, 85, 1371, 2016
  3. Park ED, Lee D, Lee HC, Catal. Today, 139, 280, 2009
  4. Sabatier P, Senderens JB, C.R. Acad. Sci. Paris, 134, 514, 1902
  5. Mao B, Ma SSK, Wang X, Su H, Chan SH, Catal. Sci. Technol., 6, 4048, 2016
  6. Aziz MAA, Jalil AA, Triwahyono S, Ahmad A, Green Chem., 17, 2647, 2015
  7. Gao J, Liu Q, Gu F, Liu B, Zhong Z, Su F, RSC Adv., 5, 22759, 2015
  8. Su X, Xu J, Liang B, Duan H, Hou B, Huang Y, J. Energy Chem., 25, 553, 2016
  9. Vannice MA, J. Catal., 37, 449, 1975
  10. Le TA, Kim MS, Lee SH, Kim TW, Park ED, Catal. Today, 293-294, 89, 2017
  11. Takenaka S, Shimizu T, Otsuka K, Int. J. Hydrog. Energy, 29(10), 1065, 2004
  12. Trueba M, Trasatti SP, Eur. J. Inorg. Chem., 17, 3393, 2005
  13. Levin I, Brandon D, J. Am. Ceram. Soc., 81, 1995, 1998
  14. Kul’ko EV, Ivanova AS, Litvak GS, Kryukova GN, Tsybulya SV, Kinet. Catal., 45, 714, 2004
  15. Sato T, Thermochim. Acta, 88, 69, 1985
  16. Sung DM, Kim YH, Park ED, Yie JE, Res. Chem. Intermed., 36, 653, 2010
  17. Kul’ko EV, Ivanova AS, Budneva AA, Paukshtis EA, Kinet. Catal., 46, 132, 2005
  18. Kim YH, Park ED, Appl. Catal. B: Environ., 96(1-2), 41, 2010
  19. Park JE, Kim BB, Park ED, Korean J. Chem. Eng., 32(11), 2212, 2015
  20. Cho JH, An SH, Chang TS, Shin CH, Catal. Lett., 146(4), 811, 2016
  21. Patterson A, Phys. Rev., 56, 978, 1939
  22. Aziz MAA, Jalil AA, Triwahyono S, Mukti RR, Taufiq-Yap YH, Sazegar MR, Appl. Catal. B: Environ., 147, 359, 2014
  23. Li CP, Chen YW, Thermochim. Acta, 256(2), 457, 1995
  24. Gao J, Jia C, Li J, Zhang M, Gu F, Xu G, Zhong Z, Su F, J. Energ. Chem, 22, 919, 2013
  25. Bali S, Leisen J, Foo SH, Sievers C, Jones CW, ChemSusChem, 7, 3145, 2014
  26. Lavalley JC, Catal. Today, 27(3-4), 377, 1996
  27. Pan Q, Peng J, Sun T, Wang S, Wang S, Catal. Commun., 45, 74, 2014
  28. Gao J, Jia C, Zhang M, Gu F, Xu G, Su F, Catal. Sci. Technol., 3, 2009, 2013
  29. Munnik P, Velthoen MEZ, Jongh PE, Jong KP, Gommes CJ, Angew. Chem.-Int. Edit., 53, 9493, 2014
  30. Bhatia S, Bakhshi NN, Mathews JF, Can. J. Chem. Eng., 56, 575, 1978
  31. Liu Y, Gao J, Liu Q, Gu F, Lu X, Jia L, Xu G, Zhong Z, Su F, RSC Adv., 5, 7539, 2015
  32. Herwijnen TV, Doesburg HV, Jong WAD, J. Catal., 28, 391, 1973
  33. Garbarino G, Bellotti D, Riani P, Magistri L, Busca G, Int. J. Hydrog. Energy, 40(30), 9171, 2015