Issue
Korean Journal of Chemical Engineering,
Vol.34, No.12, 3041-3047, 2017
Effect of drying methods on removal of residual solvents from solvent-induced amorphous paclitaxel
We investigated the effect of solvents on the formation of amorphous paclitaxel and proposed an efficient strategy for the removal of residual solvents from solvent-induced amorphous paclitaxel. Amorphous paclitaxel was produced by solvent-induced method using non-polar solvents (methylene chloride, toluene, pentane, methyl t-butyl ether, chloroform, and acetonitrile/hexane (1 : 2, v/v)). The residual pentane and hexane levels easily met the International Conference on Harmonization (ICH)-specified values (5,000 and 290 ppm) by simple rotary evaporation. When the vacuum-dried sample was subjected to microwave-assisted drying, the ICH requirements for methylene chloride (600 ppm) and acetonitrile (410 ppm) were met by drying for 23 hr at 200W and 3 hr at 200W, respectively. However, residual toluene, methyl t-butyl ether, and chloroform concentrations did not meet the ICH-specified values (890, 5,000, and 60 ppm). The shape and size of amorphous paclitaxel particles were examined by SEM and XRD.
[References]
  1. Kim JH, Korean J. Biotechnol. Bioeng., 21, 1, 2006
  2. Jeon KY, Kim JH, Korean J. Biotechnol. Bioeng., 23, 557, 2008
  3. Rao KV, Hanuman JB, Alvarez C, Stoy M, Juchum J, Davies RM, Baxley R, Pharm. Res., 12, 1003, 1995
  4. Baloglu E, Kingston DG, J. Nat. Prod., 62, 1068, 1999
  5. Choi HK, Son SJ, Na GH, Hong SS, Park YS, Song JY, J. Plant Biotechnol., 29, 59, 2002
  6. Hancock BC, Parks M, Pharm. Res., 17, 397, 2000
  7. Hancock BC, Zografi G, J. Pharm. Sci., 86, 1, 1997
  8. Prakash K, Jieun R, Kim M, Kim IS, Kim JT, Kim HI, Cho JM, Yun GA, Lee JH, Asian J. Pharm. Sci., 9, 304, 2014
  9. Liggins RT, Hunter WL, Burt HM, J. Pharm. Sci., 86, 1458, 1997
  10. Yoon JW, Kim JH, Korean J. Chem. Eng., 28(9), 1918, 2011
  11. ICH guidance Q3C impurities: Residual solvents, Fed. Regist., 62, 67377 (1997).
  12. Kim JH, Park HB, Gi US, Kang IS, Choi HK, Hong SS, Korean J. Biotechnol. Bioeng., 16, 233, 2001
  13. Gi US, Min B, Lee JH, Kim JH, Korean J. Chem. Eng., 21(4), 816, 2004
  14. Kawashima Y, York P, Adv. Drug Deliv. Rev., 60, 297, 2008
  15. Kim HS, Chae YB, Jung SB, Jang YN, J. Miner. Soc. Korea, 21, 193, 2008
  16. Li Y, Lei Y, Zhang LB, Peng JH, Li CL, Nonferrous Met. Soc. China, 21, 202, 2011
  17. Lee JY, Kim JH, Sep. Purif. Technol., 48, 1809, 2013
  18. Basak T, Bhattacharya M, Panda S, Innov. Food Sci. Emerg. Tech., 33, 333, 2016
  19. Fennell LP, Boldor D, Biomass Bioenerg., 70, 542, 2014
  20. Kone KY, Druon C, Gnimpieba EZ, Delmotte M, Duquenoy A, Laguerre JC, J. Food Eng., 119(4), 750, 2013
  21. Kumar P, Sahoo BK, Dea S, Kar DD, Chakraborty S, Meikap BC, J. Ind. Eng. Chem., 16(5), 805, 2010
  22. Lee JY, Kim JH, Korean J. Microbiol. Biotechnol., 40, 169, 2012
  23. Kim HS, Kim JH, Process Biochem., 56, 163, 2017
  24. Lee JY, Kim JH, Process Biochem., 48(3), 545, 2013
  25. Lee CG, Kim JH, Process Biochem., 50(6), 1031, 2015
  26. Lee JY, Kim JH, Korean J. Chem. Eng., 28(7), 1561, 2011
  27. Jouyban A, Soltanpour S, Chan HK, Int. J. Pharm., 269, 353, 2004
  28. Hemwimon S, Pavasant P, Shotipruk A, Sep. Purif. Technol., 54(1), 44, 2007
  29. Cho E, Cho W, Cha KH, Park J, Kim MS, Kim JS, Park HJ, Hwang SJ, Int. J. Pharm., 396, 91, 2010
  30. Matteucci ME, Hotze MA, Johnston KP, Williams RO, Langmuir, 22(21), 8951, 2006
  31. Dong Y, Ng WK, Shen S, Kim S, Tan RBH, Int. J. Pharm., 375, 84, 2009
  32. Pyo SH, Kim MS, Cho JS, Song BK, Han BH, Choi HJ, J. Chem. Technol. Biotechnol., 79(10), 1162, 2004