Issue
Korean Journal of Chemical Engineering,
Vol.34, No.11, 3028-3040, 2017
Thermokinetics behavior of epoxy adhesive reinforced with low viscous aliphatic reactive diluent and nano-fillers
The current study reports the effect of low viscous aliphatic reactive diluent (RD), MWCNT and VGCF on the curing kinetics of amine cured epoxy adhesive system employing non-isothermal differential scanning calorimetric (DSC) technique. Non-isothermal DSC thermograms of epoxy adhesive were studied at various heating rates: 5, 10 and 15 °C/min. The decrease in the exothermic peak height with the introduction of MWCNTs and VGCFs was taken as proof of the acceleration effect of nano-fillers on the epoxy-amine curing reaction. Also, increased Tonset, TP and ΔHcurs values were observed for epoxy/RD adhesive system at all heating rates. The value of activation energy (Ea) was determined using Kissinger and Flynn-Wall-Ozawa methods. Experimental results showed that the addition of 10 wt% RD increased the Ea from 60 to 63 kJ/mol on account of the reduced viscosity, allowing better contact of resin with the curing agent. Furthermore, MWCNTs have an accelerating effect on the cure kinetics that does not change the autocatalytic cure reaction mechanism of epoxy resin. It was also found that the addition of MWCNT and VGCF decreases the overall degree of conversion, as evident with lower ΔHcure and Ea of the cured adhesive when compared with epoxy/RD system. The dependency of Ea on degree of conversion ranging from α =0.1 to 0.9was also investigated. The two normalized functions y(α) and z(α) were also considered in order to study the complex curing mechanism. The kinetic parameters m, n and lnA were obtained by using two parameter autocatalytic Sestak-Berggren model. The curves revealed good agreement between experimentally determined and theoretically obtained MWCNT/VGCF reinforced epoxy adhesive systems.
[References]
  1. Jakubinek MB, Ashrafi B, Zhang Y, Martinez-rubi Y, Kingston CT, Johnston A, Simard B, Compos. Part B, 69, 87, 2015
  2. Vietri U, Guadagno L, Raimondo M, Vertuccio L, Lafdi K, Compos. Part B, 61, 73, 2014
  3. Singh AK, Panda BP, Mohanty S, Nayak SK, Gupta MK, J. Mater. Sci. Mater. Electron., 28, 8908, 2017
  4. Zhou T, Wang X, Liu X, Xiong D, Carbon, 47, 1112, 2009
  5. Singh AK, Panda BP, Mohanty S, Nayak SK, Gupta MK, Polymer-Plastics Technology and Engineering (2017), DOI:10.1080/03602559.2017.1354253.
  6. Singh AK, Panda BP, Mohanty S, Nayak SK, Gupta MK, Polym. Adv. Technol. (2017), DOI:10.1002/pat.4072.
  7. Gonzalez-Dominguez JM, Gonzalez M, Anson-Casaos A, Diez-Pascual AM, Gomez MA, Martinez MT, J. Phys. Chem., 115, 7238, 2011
  8. Galpaya DGD, Fernando JFS, Rintoul L, Motta N, Waclawik ER, Yan C, George GA, Polymer, 71, 122, 2015
  9. Aris A, Shojaei A, Bagheri R, Ind. Eng. Chem. Res., 54(36), 8954, 2015
  10. Natarajan M, Murugavel SC, J. Therm. Anal. Calorim., 125, 387, 2016
  11. Vinnik R, Roznyatovsky V, J. Therm. Anal., 85, 455, 2006
  12. Paluvai NR, Mohanty S, Nayak SK, High Perform. Polym., 27, 918, 2015
  13. Sahoo SK, Mohanty S, Nayak SK, RSC Adv., 5, 13674, 2015
  14. Rohde BJ, Robertson ML, Krishnamoorti R, Polymer, 69, 204, 2015
  15. Choi WS, Shanmugharaj AM, Ryu SH, Thermochim. Acta, 506(1-2), 77, 2010
  16. Tcherbi-narteh A, Jahan N, Narteh A, Hosur M, Rahman M, Jeelani S, Open J. Compos. Mater., 24, 40, 2013
  17. Yang K, Gu M, Polym. J., 41, 752, 2009
  18. Puglia D, Valentini L, Armentano I, Kenny JM, Diam. Relat. Mat., 12, 827, 2003
  19. Xie H, Liu B, Sun Q, Yuan Z, Shen J, Cheng R, J. Appl. Polym. Sci., 96, 329, 2004
  20. Wu J, Chung DDL, Carbon, 42, 3039, 2004
  21. Jana S, Zhong WH, J. Mater. Sci., 44(8), 1987, 2009
  22. Sahoo SK, Mohanty S, Nayak SK, Thermochim. Acta, 614, 163, 2015
  23. Sbirrazzuoli N, Mititelu-Mija A, Vincent L, Alzina C, Thermochim. Acta, 447(2), 167, 2006
  24. Malek J, Thermochim. Acta, 200, 257, 1992
  25. Vargas MA, Vazquez H, Guthausen G, Thermochim. Acta, 611, 10, 2015
  26. Saad GR, Abd Elhamid EE, Elmenyawy SA, Thermochim. Acta, 524(1-2), 186, 2011
  27. Rosu D, Cascaval CN, Mustata F, Ciobanu C, Thermochim. Acta, 383(1-2), 119, 2002
  28. Esmizadeh E, Naderi G, Yousefi AA, Milone C, J. Therm. Anal. Calorim., 126, 771, 2016
  29. Kissinger HE, Anal. Chem., 29, 1702, 1957
  30. Ozawa T, J. Therm. Anal., 2, 301, 1970
  31. Vyazovkin S, Macromol. Rapid Commun., 23(13), 771, 2002
  32. Malek J, Thermochim. Acta, 355(1-2), 239, 2000
  33. Senum GI, Yang RT, J. Therm. Anal., 11, 445, 1977
  34. Hefner RE, Hull JW, Ringer JW, Argyropoulos JN, US Patent, 8,318,834 (2012).
  35. Song X, Xu S, J. Therm. Anal. Calorim., 123, 319, 2016
  36. Zhao K, Song XX, Liang CS, Wang J, Xu SA, Iran. Polym. J., 24, 425, 2015
  37. Hu JH, Shan JY, Zhao JQ, Tong Z, Thermochim. Acta, 632, 56, 2016
  38. Lee SO, Choi SH, Kwon SH, Rhee KY, Park SJ, Compos. Part B Eng., 79, 47, 2015
  39. Vertuccio L, Russo S, Raimondo M, Lafdi K, Guadagno L, RSC Adv., 5, 90437, 2015
  40. Nunez-Regueira L, Villanueva M, Fraga-Rivas I, J. Therm. Anal. Calorim., 86, 463, 2006
  41. Aris A, Shojaei A, Bagheri R, Ind. Eng. Chem. Res., 54(36), 8954, 2015
  42. Jagtap SB, Rao VS, Barman S, Ratna D, Polymer, 63, 41, 2015
  43. Xie HF, Liu BH, Yuan ZR, Shen JY, Cheng RS, J. Polym. Sci. B: Polym. Phys., 42(20), 3701, 2004