Issue
Korean Journal of Chemical Engineering,
Vol.34, No.11, 3017-3027, 2017
Statistical optimization of curcumin nanosuspension through liquid anti-solvent precipitation (LASP) process in a microfluidic platform: Box-Behnken design approach
The paper deals with the development and optimization of curcumin nanosuspension by solvent/anti-solvent precipitation method in a microfluidic platform. A three-level Box-Behnken design was applied as an optimizing technique to investigate the effect of three independent operating variables, namely, volume ratios of anti-solvent to solvent, flow rate of drug solution, and curcumin concentration on the preferred response. In presence of PVP as the stabilizer, a nano-curcumin suspension was obtained in the range of 62-335nm. Analysis of variance showed that the variables with the highest effect were the linear effects of the anti-solvent to solvent ratio, and its corresponding squared term. Applying response surface methodology, curcumin nanosuspension with average size of 63.12 nm can be obtained under optimum condition As: S=15, solvent flow rate of 1.0mL/min and curcumin ethanolic concentration of 5.0mg/mL. The prepared nanoparticles were further characterized by infrared spectroscopy, scanning electron microscopy, and X-ray diffraction tests.
[References]
  1. Lipinski CA, Am. Pharm. Rev., 5, 82, 2002
  2. Noyes AA, Whitney WR, J. Am. Chem. Soc., 19, 930, 1897
  3. Lindfors L, Forssen S, Westergren J, Olsson U, J. Colloid Interface Sci., 325(2), 404, 2008
  4. Pasquali I, Bettini R, Giordano F, Adv. Drug Deliv. Rev., 60, 399, 2008
  5. Kim IS, Kim SH, Int. J. Pharm., 245, 67, 2002
  6. Matteucci ME, Brettmann BK, Rogers TL, Elder EJ, Williams RO, Johnston KP, Mol. Pharmaceutics, 4, 782, 2007
  7. Chen JF, Zhang JY, Shen ZG, Zhong J, Yun J, Ind. Eng. Chem. Res., 45(25), 8723, 2006
  8. Zhao H, Wang JX, Wang QA, Chen JF, Yun J, Ind. Eng. Chem. Res., 46(24), 8229, 2007
  9. Baldyga J, Kubicki D, Shekunov BY, Smith KB, Chem. Eng. Res. Des., 88(9A), 1131, 2010
  10. Salmaso S, Elvassore N, Bertucco A, Caliceti P, J. Pharm. Sci., 98, 640, 2009
  11. Reverchon E, Adami R, Cardea S, Della Porta G, J. Supercrit. Fluids, 47(3), 484, 2009
  12. Park MW, Yeo SD, Chem. Eng. Res. Des., 90(12), 2202, 2012
  13. Yeo SD, Lee JC, J. Supercrit. Fluids, 30(3), 315, 2004
  14. Weingaertner DA, Lynn S, Hanson DN, Ind. Eng. Chem. Res., 30, 490, 1991
  15. Chen JF, Zheng C, Chen GT, Chem. Eng. Sci., 51(10), 1957, 1996
  16. Zhao H, Wang JX, Zhang HX, Shen ZG, Yun J, Chen JF, Chin. J. Chem. Eng., 17(2), 318, 2009
  17. Tosun G, 6th European Conference on Mixing (1988).
  18. Johnson BK, Prud'homme RK, AIChE J., 49(9), 2264, 2003
  19. Mersmann A, Chem. Eng. Process., 38(4-6), 345, 1999
  20. Grenman H, Murzina E, Ronnholm M, Eranen K, Mikkola JP, Lahtinen M, Salmi T, Murzin DY, Chem. Eng. Process., 46(9), 862, 2007
  21. Rao DP, Bhowal A, Goswami PS, Ind. Eng. Chem. Res., 43(4), 1150, 2004
  22. Akay G, Tong L, Addleman R, Ind. Eng. Chem. Res., 41(22), 5436, 2002
  23. Chen JF, Wang YH, Guo F, Wang XM, Zheng C, Ind. Eng. Chem. Res., 39(4), 948, 2000
  24. Hessel V, Lowe H, Schonfeld F, Chem. Eng. Sci., 60(8-9), 2479, 2005
  25. Mello JD, Mello AD, Lab Chip, 4, 11, 2004
  26. Taghavi-Moghadam S, Kleemann A, Golbig G, Org. Process Res. Dev., 5, 652, 2001
  27. Ehrfeld W, CHIMIA Int. J. Chem., 56, 598, 2002
  28. Patil P, Khairnar G, Naik J, Chem. Eng. Res. Des., 104, 98, 2015
  29. He Y, Huang Y, Cheng Y, Cryst. Growth Des., 10, 1021, 2010
  30. Liu Z, Huang Y, Jin Y, Cheng Y, Microfluid. Nanofluid., 9, 773, 2010
  31. Wang WT, Zhao SF, Shao T, Jin Y, Cheng Y, Chem. Eng. J., 192, 252, 2012
  32. Kakran M, Sahoo NG, Tan IL, Li L, J. Nanopart. Res., 14, 757, 2012
  33. He Y, Huang Y, Wang W, Cheng Y, Chem. Eng. J., 168, 1021, 2011
  34. Valeh-e-Sheyda P, Rahimi M, Parsamoghadam A, Adibi H, J. Taiwan Inst. Chem. Eng., 46, 65, 2015
  35. Valeh-e-Sheyda P, Rahimi M, Adibi H, Razmjou Z, Ghasempour H, Chem. Eng. Process., 91, 78, 2015
  36. Ferreira SC, Bruns R, Ferreira H, Matos G, David J, Brandao G, da Silva EP, Portugal L, Dos Reis P, Souza A, Anal. Chim. Acta, 597, 179, 2007
  37. Hunter J, Hunter J, Box G, Wiley series in probability and mathematical statistics (1978).
  38. Box GE, Wilson K, J. R. Stat. Soc. Series B, 13, 1, 1951
  39. Box GE, DW, Technometrics, 2, 455, 1960
  40. Souza AS, dos Santos WNL, Ferreira SLC, Spectroc. Acta Pt. B-Atom. Spectr., 60, 737, 2005
  41. Montgomery DC, John Wiley & Sons (2008).
  42. Agnihotri SM, Vavia PR, Biol. Med., 5, 90, 2009
  43. Chopra S, Patil GV, Motwani SK, Eur. J. Pharm. Biopharm., 66, 73, 2007
  44. Li YL, Fang ZX, You J, J. Agric. Food Chem., 61, 1464, 2013
  45. Celebi N, Yildiz N, Demir AS, Calimli A, J. Supercrit. Fluids, 47(2), 227, 2008
  46. Guozhong Cao YW, 2nd Ed., World Scientific, London (2011).
  47. Kakran M, Sahoo NG, Li L, Judeh Z, Wang Y, Chong K, Loh L, Int. J. Pharm., 383, 285, 2010
  48. Matteucci ME, Hotze MA, Johnston KP, Williams RO, Langmuir, 22(21), 8951, 2006
  49. Zhang HX, Wang JX, Zhang ZB, Le Y, Shen ZG, Chen JF, Int. J. Pharm., 374, 106, 2009
  50. Sengupta A, Kamble PD, Basu JK, Sengupta S, Ind. Eng. Chem. Res., 51, 147, 2011
  51. Zetasizer Nano Series, Nano Series, User Manual. MAN0317. Issue 1.1. (2004).
  52. Thorat AA, Dalvi SV, Cryst. Eng. Comm., 16, 11102, 2014
  53. Mohan PRK, Sreelakshmi G, Muraleedharan CV, Joseph R, Vib. Spectrosc., 62, 77, 2012
  54. Rabinow BE, Nat. Rev. Drug Discovery, 3, 785, 2004
  55. Sun J, Simon SL, Thermochim. Acta, 463(1-2), 32, 2007
  56. Kim S, Ng WK, Dong Y, Das S, Tan RBH, J. Food Eng., 108(1), 37, 2012