Issue
Korean Journal of Chemical Engineering,
Vol.34, No.11, 3009-3016, 2017
A correlation of results measured by cyclic voltammogram and impedance spectroscopy in glucose oxidase based biocatalysts
A new biocatalyst consisting of glucose oxidase (GOx) and polyethylenimine (PEI) immobilized on carbon nanotube (CNT) (CNT/PEI/GOx) was developed, while cyclic voltammogram (CV) behaviors of several related catalysts including the CNT/PEI/GOx were analyzed in terms of charge transfer resistances (Rcts) obtained by measuring Nyquist plots using electrochemical impedance spectroscopy (EIS). A qualitative correlation between the flavin adenine dinucleotide (FAD) redox reactivity measured by the CV and Rct was established. As factors affecting both the FAD reactivity and Rct, concentrations of GOx, glucose, and phosphate buffer solution, electrolyte pH and ambient condition were considered and evaluations of the catalysts using the CV curves and Nyquist plots confirmed that a pattern in the FAD reactivity was closely linked to that in the Rct, implying that FAD reactivities of the catalysts are predicted by the measurements of their Rcts. Even regarding performance of the enzymatic biofeul cells(EBCs) using the reacted catalysts, a pattern of the Rcts is compatible with that in the maximum power densities (MPDs) of the EBCs.
[References]
  1. Zebda A, Cosnier S, Alcaraz JP, Holzinger M, Le Goff A, Gondran C, Boucher F, Giroud F, Gorgy K, Lamraoui H, Cinquin P, Sci. Rep., 3, 1516, 2013
  2. Zebda A, Gondran C, Le Goff A, Holzinger M, Cinquin P, Cosnier S, Nat. Commun., 2, 370, 2011
  3. Zebda A, Renaud L, Cretin M, Innocent C, Pichot F, Ferrigno R, Tingry S, J. Power Sources, 193(2), 602, 2009
  4. Choi HS, Kim DS, Thapa LP, Lee SJ, Kim SB, Cho J, Park C, Kim SW, Korean J. Chem. Eng., 33(12), 3434, 2016
  5. Bohara RA, Thorat ND, Pawar SH, Korean J. Chem. Eng., 33(1), 216, 2016
  6. Cosnier S, Le Goff A, Holzinger M, Electrochem. Commun., 38, 19, 2014
  7. Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867, 2004
  8. Kwon KY, Youn J, Kim JH, Park Y, Jeon C, Kim BC, Kwon Y, Zhao X, Wang P, Sang BI, Lee J, Park HG, Chang HN, Hyeon T, Ha S, Jung HT, Kim J, Biosens. Bioelectron., 26, 655, 2010
  9. Yu EH, Krewer U, Scott K, Energy, 3, 1499, 2010
  10. Chung Y, Hyun K, Kwon Y, Nanoscale., 8, 1161, 2016
  11. Han S, Chae GS, Lee JS, Korean J. Chem. Eng., 33(6), 1799, 2016
  12. Kavitha AL, Yazhini KB, Korean J. Chem. Eng., 33(6), 1948, 2016
  13. Shimizu K, Ishihara M, Biotechnol. Bioeng., 29, 236, 1987
  14. Wei Y, Xu J, Feng Q, Lin M, Dong H, Zhang W, Wang CJ, Nanosci. Nanotechnol., 1, 83, 2001
  15. Szymanska K, Bryjak J, Jarzebski AB, Top. Catal., 52, 1030, 2009
  16. Schoevaart R, Wolbers MW, Golubovic M, Ottens M, Kieboom APG, van Rantwijk F, van der Wielen LAM, Sheldon RA, Biotechnol. Bioeng., 87(6), 754, 2004
  17. Tran DN, Balkus KJ, ACS Catal., 1, 956, 2011
  18. WILLNER I, RIKLIN A, SHOHAM B, RIVENZON D, KATZ E, Adv. Mater., 5(12), 912, 1993
  19. Willner I, Helegshabtai V, Blonder R, Katz E, Tao GL, J. Am. Chem. Soc., 118(42), 10321, 1996
  20. Willner I, Katz E, Willner B, Electroanalysis, 9, 965, 1997
  21. Christwardana M, Chung Y, Kwon Y, Nanoscale, 9, 1993, 2017
  22. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197, 2015
  23. Inamuddin, Beenish, Naushad M, Korean J. Chem. Eng., 33(1), 120, 2016
  24. Wooten M, Karra S, Zhang M, Gorski W, Anal. Chem., 86, 752, 2014
  25. Shervedani RK, Mehrjardi AH, Zamiri N, Bioelectrochemistry, 69, 201, 2006
  26. Mulchandani P, Mulchandani A, Kaneva I, Chen W, Biosens. Bioelectron., 14, 77, 1999
  27. Yuan R, Tang DP, Chai YQ, Zhong X, Liu Y, Dai JY, Langmuir, 20(17), 7240, 2004
  28. Chung Y, Ahn Y, Christwardana M, Kim H, Kwon Y, Nanoscale, 8, 9201, 2016
  29. Christwardana M, Kwon Y, J. Power Sources, 299, 604, 2015
  30. Ahn Yeonjoo, Yoo Kye Sang, Kim Lae-Hyun, Kwon Yongchai, Int. J. Hydrog. Energy, 41(39), 17548, 2016
  31. Duan S, Yue R, Huang Y, Talanta, 160, 607, 2016
  32. Fischer JE, Dai H, Thess A, Lee R, Hanjani NM, Dehaas DL, Smalley RE, Phys. Rev., 55, R4921, 1997
  33. Marinho B, Ghislandi M, Tkalya E, Koning CE, de With G, Powder Technol., 221, 351, 2012
  34. Zou G, Jain M, Yang H, Zhang Y, Williams D, Jia Q, Nanoscale, 2, 418, 2010
  35. Deng S, Jian G, Lei J, Hu Z, Ju H, Biosens. Bioelectron., 25, 373, 2009
  36. Chen WC, Wen TC, Hu CC, Gopalan A, Electrochim. Acta, 47(8), 1305, 2002
  37. Johnson AM, Sadoway DR, Cima MJ, Langer R, J. Electrochem. Soc., 152(1), H6, 2005
  38. Prodan C, Bot C, J. Phys. D-Appl. Phys., 42, 175505, 2009
  39. Ji J, Christwardana M, Chung Y, Kwon Y, Trans. Korean Hydrogen New Energy Soc., 27, 526, 2016
  40. Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy, 40(5), 2199, 2015
  41. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 3012, 2016
  42. Ivnitski D, Branch B, Atanassov P, Apblett C, Electrochem. Commun., 8, 1204, 2006
  43. Ivnitski D, Artyushkova K, Rincon RA, Atanassov P. Luckarift HR, Johnson GR, Small., 4, 357, 2008
  44. Bankar SB, Bule MV, Singhal RS, Ananthanarayan L, Biotechnol. Adv., 27, 489, 2009
  45. Tlili C, Reybier K, Geloen A, Ponsonnet L, Martelet C, Ouada HB, Lagarde M, Jaffrezic-Renault N, Anal. Chem., 75, 3340, 2003