Issue
Korean Journal of Chemical Engineering,
Vol.34, No.11, 2993-2998, 2017
Facile synthesis of iron-ruthenium bimetallic oxide nanoparticles on carbon nanotube composites by liquid phase plasma method for supercapacitor
Iron-ruthenium bimetallic oxide nanoparticles were precipitated on carbon nanotubes by liquid-phase plasma method. We also evaluated the physicochemical and electrochemical properties of prepared composite for supercapacitor electrode. Polycrystalline about 10 to 25 nm-sized bimetallic nanoparticles were evenly precipitated on the carbon nanotube (CNT) and consisted of Fe3+ and Ru4+. Bimetallic oxide nanoparticles’ composition depended on the ratio of the metal precursor concentration and standard reduction potential. The C-V area and specific capacitance of iron-ruthenium oxide nanoparticle/carbon nanotube (IRCNT) composite electrodes was higher than that of untreated CNT electrode, and increased with increasing ruthenium content. The cycling stability of IRCNT composite electrode was higher than untreated CNT electrode, especially iron element was more stable.
[References]
  1. Burke A, J. Power Sources, 91(1), 37, 2000
  2. Lei ZB, Christov N, Zhao XS, Energy Environ. Sci., 4, 1866, 2011
  3. Chen Z, Qin YC, Weng D, Xiao QF, Peng YT, Wang XL, Li HX, Wei F, Lu YF, Adv. Funct. Mater., 19(21), 3420, 2009
  4. Reddy RN, Reddy RG, J. Power Sources, 124(1), 330, 2003
  5. Wan CY, Azumi K, Konno H, Electrochim. Acta, 52(9), 3061, 2007
  6. Lee H, Park SH, Kim SJ, Park YK, Kim BJ, An KH, Ki SJ, Jung SC, Int. J. Hydrog. Energy, 40(1), 754, 2015
  7. An KH, Kim WS, Park YS, Moon JM, Bae DJ, Lim SC, Lee YS, Lee YH, Adv. Funct. Mater., 11(5), 387, 2001
  8. Venugopal N, Kim WS, Korean J. Chem. Eng., 32(9), 1918, 2015
  9. Zhang Y, Li L, Su H, Huang W, Dong X, J. Mater. Chem., 3, 43, 2015
  10. Shan Y, Gao L, Mater. Chem. Phys., 103(2-3), 206, 2007
  11. Lee H, Kim BH, Park YK, An KH, Choi YJ, Jung SC, Int. J. Hydrog. Energy, 41(18), 7582, 2016
  12. Liu TC, Pell WG, Conway BE, Electrochim. Acta, 42(23-24), 3541, 1997
  13. Xie JF, Sun X, Zhang N, Xu K, Zhou M, Xie Y, Nano Energy, 2, 65, 2013
  14. Lee H, Park SH, Kim SJ, Park YK, An KH, Kim BJ, Jung SC, J. Nanomater. (2014), DOI:10.1155/2014/132032.
  15. Lee H, Park SH, Kim SJ, Park YK, Kim BH, Jung SC, Microelectron. Eng., 126, 153, 2014
  16. Sun SH, Jung SC, Korean J. Chem. Eng., 33(3), 1075, 2016
  17. Lee SJ, Lee H, Jeon KJ, Park H, Park YK, Jung SC, Nanoscale Res. Lett., 11, 344, 2016
  18. Lee DJ, Kim SJ, Lee J, Lee H, Kim HG, Jung SC, Sci. Adv. Mater., 6, 1599, 2014
  19. Lee H, Kim SJ, An KH, Kim JS, Kim BH, Jung SC, Adv. Mater. Lett., 7, 98, 2016
  20. Kim BH, Park YK, An KH, Lee H, Jung SC, Sci. Adv. Mater., 8, 1769, 2016
  21. Sansonetti JE, Martin WC, J. Phys. Chem. Ref Data, 34, 1599, 2005
  22. Park KC, Jang IY, Wongwiriyapan W, Morimoto S, Kim YJ, Jung YC, Toya T, Endo M, J. Mater. Chem., 20, 5345, 2010
  23. Salomonsson A, Petoral RM, Uvdal K, Aulin C, Kall PO, Ojamae L, Strand M, Sanati M, Spetz AL, J. Nanopart. Res., 8, 899, 2006