Issue
Korean Journal of Chemical Engineering,
Vol.34, No.11, 2933-2943, 2017
Evaluating the ability of separation and adsorption of SO2 by nano-CuO-Fe2O3/TiO2 in high concentrations and moderate temperatures
Nano CuO-Fe2O3/TiO2 adsorbents were made with different compositions of metal oxides using precipitation- desorption method. The adsorbents were applied for adsorption of SO2 at high concentrations ranging from 10,000 to 30,000 ppm and temperatures between 523 and 627 K. Adsorption experiments were applied for adsorbents in a laboratory fixed bed adsorption column. The adsorption capacity was measured by calculating the area under the adsorption curve using the integral method. The results showed that temperature is the most affecting factor on the adsorption capacity. The highest adsorption capacity was obtained by using 17, 8 and 75 wt% of CuO, Fe2O3 and nano TiO2, respectively. Characteristics of the best sorbent were determined by using Fe-SEM, XRD and nitrogen adsorption- desorption analyses.
[References]
  1. Bahrami R, Ebrahim HA, Halladj R, Process Saf. Environ. Protect., 92(6), 938, 2014
  2. Mathieu Y, Soulard M, Patarin J, Moliere M, Fuel Process. Technol., 99, 35, 2012
  3. Atanes E, Nieto-Marquez A, Cambra A, Ruiz-Perez MC, Fernandez-Martinez F, Chem. Eng. J., 211, 60, 2012
  4. Lee SJ, Lee SC, Jung SY, Ryu CK, Kim JC, Korean J. Chem. Eng., 26(5), 1286, 2009
  5. Zhao L, Li X, Hao C, Raston CL, Appl. Catal. B: Environ., 117-118, 339, 2012
  6. Abdullah WNW, Bakar WAWA, Ali R, Korean J. Chem. Eng., 32(10), 1999, 2015
  7. Lagas JA, Borsboom J, Berben PH, Oil Gas J., 83:41, 66, 1988
  8. Elsner MP, Menge M, Muller C, Agar DW, Catal. Today, 79-80, 487, 2003
  9. Jones D, Bhattacharyya D, Turton R, Zitney SE, Ind. Eng. Chem. Res., 51, 2362, 2011
  10. Buelna G, Lin YS, Sep. Purif. Technol., 39(3), 167, 2004
  11. Mathieu Y, Tzanis L, Soulard M, Patarin J, Vierling M, Moliere M, Fuel Process. Technol., 114, 81, 2013
  12. Ho HP, Kasinathan P, Kim J, Lee D, Woo HC, Korean J. Chem. Eng., 33(6), 1908, 2016
  13. Alvarezmerino MA, Carrascomarin F, Morenocastilla C, Appl. Catal. B: Environ., 13(3-4), 229, 1997
  14. Guo J, Lua AC, J. Chem. Technol. Biotechnol., 75(11), 971, 2000
  15. Ma JR, Liu ZY, Liu SJ, Zhu ZP, Appl. Catal. B: Environ., 45(4), 301, 2003
  16. Tseng HH, Wey MY, Liang YS, Chen KH, Carbon, 41, 1079, 2003
  17. Kikuyama S, Miura A, Kikuchi R, Takeguchi T, Eguchi K, Appl. Catal. A: Gen., 259(2), 191, 2004
  18. Lee SJ, Jung SY, Lee SC, Jun HK, Ryu CK, Kim JC, Ind. Eng. Chem. Res., 48(5), 2691, 2009
  19. Jae LS, Jun HK, Jung SY, Lee TJ, Ryu CK, Kim JC, Ind. Eng. Chem. Res., 44(26), 9973, 2005
  20. Lowell PS, Schwitzgebel K, Parsons TB, Sladek KJ, Ind. Eng. Chem. Process Des. Dev., 10, 384, 1971
  21. Schreier E, Eckelt R, Richter M, Fricke R, Appl. Catal. B: Environ., 65(3-4), 249, 2006
  22. Jeong SM, Kim SD, Ind. Eng. Chem. Res., 36(12), 5425, 1997
  23. Macken C, Hodnett BK, Paparatto G, Ind. Eng. Chem. Res., 39(10), 3868, 2000
  24. Jia ZH, Liu ZY, Zhao YH, Chem. Eng. Technol., 30(9), 1221, 2007
  25. Xiang J, Zhao Q, Hu S, Sun L, Su S, Fu P, Zhang A, Qiu J, Chen H, Xu M, Asia Pac. J. Chem. Eng., 2, 182, 2007
  26. Centi G, Passarini N, Perathoner S, Riva A, Ind. Eng. Chem. Res., 31, 1947, 1992
  27. Gavaskar VS, Abbasian J, Ind. Eng. Chem. Res., 45(17), 5859, 2006
  28. Zhao L, Li XY, Qu ZP, Zhao QD, Liu SM, Hu XJ, Sep. Purif. Technol., 80(2), 345, 2011
  29. Lee YJ, Park NK, Han GB, Ryu SO, Lee TJ, Chang CH, Curr. Appl. Phys., 8(6), 746, 2008
  30. Lee HS, Kang MP, Song YS, Lee TJ, Rhee YW, Korean J. Chem. Eng., 18(5), 635, 2001
  31. Li K, Wang Y, Wang S, Zhu B, Zhang S, Huang W, Wu S, J. Nat. Gas Chem., 18, 449, 2009
  32. Biabani A, Rezaei M, Fattah Z, J. Nat. Gas Chem., 21, 415, 2012
  33. Dolan MD, Ilyushechkin AY, Mclennan KG, Sharma SD, Asia Pac. J. Chem. Eng., 7, 1, 2012
  34. Luo Y, Li D, Dev. Chem. Eng. Mineral Process., 10(3/4), 443, 2002