Issue
Korean Journal of Chemical Engineering,
Vol.34, No.11, 2916-2921, 2017
Highly sensitive glucose biosensor using new glucose oxidase based biocatalyst
Glucose, which is a primary energy source of living organisms, can induce diabetes or hypoglycemia if its concentration in blood is irregular. It is therefore important to develop glucose biosensor that reads the concentration of glucose in blood precisely. In the present work, we suggest new glucose oxidase (GOx) based catalysts that can improve the sensitivity of the glucose biosensor and make glucose measurements over a wide concentration ranges possible. For synthesizing such catalysts, a composite including pyrenecarboxaldehyde (PCA) and GOx is attached to substrate including carbon nanotube (CNT) and polyethyleneimine (PEI) (CNT/PEI/[PCA/GOx]). Catalytic activity and stability of the catalyst are then evaluated. According to the investigation, the catalyst shows excellent glucose sensitivity of 47.83 μAcm-2mM-1, low Michaelis-Menten constant of 2.2mM, and wide glucose concentration detection, while it has good glucose selectivity against inhibitors, such as uric acid and ascorbic acid. Also, its activity is maintained to 95.7% of its initial value even after four weeks, confirming the catalyst is stable enough. The excellence of the catalyst is attributed to hydrophobic interaction, C=N bonds, and π-hydrogen interaction among GOx, PCA and PEI/ CNT. The bindings play a role in facilitating electron transport between GOx and electrode.
[References]
  1. Wang J, Chem. Rev., 108(2), 814, 2008
  2. Chung Y, Kwon Y, Korean Chem. Eng. Res., 53(6), 802, 2015
  3. World Health Organization (WHO) of United Nations (UN). Global Report on Diabetes sheet. Available online: http://www.who.int/diabetes/global-report/WHD16-press-release-EN_3.pdf (Accessed on May 09, 2016).
  4. Clark LC, Lyons C, Ann NY, Acad. Sci., 102, 29, 1962
  5. Cosnier S, Biosens. Bioelectron., 14, 443, 1999
  6. Minteer SD, Liaw BY, Cooney MJ, Curr. Opin. Biotechnol., 18, 228, 2007
  7. Kim J, Jia H, Wang PC, Biotechnol. Adv., 24, 296, 2006
  8. Zhou C, Xu L, Song J, Xing R, Xu S, Liu D, Song H, Sci. Rep., 4, 7382, 2014
  9. Zhu H, Li L, Zhou L, Shao Z, Chen X, J. Mater. Chem., 4, 7333, 2016
  10. Christwardana M, Kwon Y, J. Power Sources, 299, 604, 2015
  11. Barton SC, Gallaway J, Atanassov P, Chem. Rev., 104(10), 4867, 2004
  12. Yu EH, Krewer U, Scott K, Energy, 3, 1499, 2010
  13. Choi HS, Kim DS, Thapa LP, Lee SJ, Kim SB, Cho J, Park C, Kim SW, Korean J. Chem. Eng., 33(12), 3434, 2016
  14. Bohara RA, Thorat ND, Pawar SH, Korean J. Chem. Eng., 33(1), 216, 2016
  15. Inamuddin, Beenish, Naushad M, Korean J. Chem. Eng., 33(1), 120, 2016
  16. Jo BH, Kim CS, Jo YK, Cheong H, Cha HJ, Korean J. Chem. Eng., 33(4), 1125, 2016
  17. Christwardana M, Chung Y, Kwon Y, NPG Asia Mater., 9, e386, 2017
  18. Chung Y, Ahn Y, Kim DH, Kwon Y, J. Power Sources, 337, 152, 2017
  19. Christwardana M, Chung Y, Kwon Y, Nanoscale., 9, 1993, 2017
  20. Hyun KH, Han SW, Koh WG, Kwon Y, J. Power Sources, 286, 197, 2015
  21. Wooten M, Karra S, Zhang M, Gorski W, Anal. Chem., 86, 752, 2014
  22. Cui JD, Liu RL, Li LB, Korean J. Chem. Eng., 33(2), 610, 2016
  23. Hyun K, Han SW, Koh WG, Kwon Y, Int. J. Hydrog. Energy, 40(5), 2199, 2015
  24. Christwardana M, Kim KJ, Kwon Y, Sci. Rep., 6, 3012, 2016
  25. Yoo EH, Lee SY, Sensors, 10, 4558, 2010
  26. Uang YM, Chou TC, Biosens. Bioelectron., 19, 141, 2003
  27. Liu Y, Wang M, Zhao F, Xu Z, Dong S, Biosens. Bioelectron., 21, 984, 2005
  28. Kong T, Chen Y, Ye Y, Zhang K, Wang Z, Wang X, Sens. Actuators B-Chem., 138, 344, 2009
  29. Kang X, Wang J, Wu H, Aksay IA, Liu J, Lin Y, Biosens. Bioelectron., 25, 901, 2009
  30. Liu G, Lin Y, Electrochem. Commun., 8, 251, 2006
  31. Wu BY, Hou SH, Yin F, Li J, Zhao ZX, Huang JD, Chen Q, Biosens. Bioelectron., 22, 838, 2007
  32. Unnikrishnan B, Palanisamy S, Chen SM, Biosens. Bioelectron., 39, 70, 2013