Issue
Korean Journal of Chemical Engineering,
Vol.34, No.11, 2840-2851, 2017
Statistical optimization for lithium silicate catalyzed production of biodiesel from waste cooking oil
Lithium silicate is one of the suitable heterogeneous catalysts for biodiesel production. The possibilities of large number of combinations of different reaction parameters make the optimization of biodiesel production process over various heterogeneous catalysts highly tedious, necessitating the development of alternate strategies for parameter optimization. Here, Box-Behnken design (BBD) coupled with response surface methodology (RSM) is employed to optimize the process parameters required for the production of biodiesel from waste cooking oil using lithium silicate as catalyst. Simple method of impregnation was performed for the material preparation and the catalyst was analyzed using different techniques. It was found that the activity is directly proportional to the basicity data obtained from temperature programmed desorption (TPD) of CO2 over various catalyst systems. The material exhibits macroporous morphology and the major crystalline phase of the most active catalyst was found to be Li2SiO3. The effects of different reaction parameters were studied and a biodiesel yield of 100% was obtained under the predicted optimum reaction conditions of methanol : oil molar ratio 15 : 1, catalyst amount 7 wt%, reaction temperature 55 °C and reaction time 2.5 h. The validation experiments showed a correlation coefficient of 0.95 between the predicted and experimental yield of biodiesel, which indicates the high significance of the model. The fuel properties of biodiesel obtained under the optimum conditions met the specifications as mentioned in ASTM D6751 and EN 14214 standards. Catalyst heterogeneity and low reaction temperature are the major attractions of the present biodiesel preparation strategy.
[References]
  1. Ghiaci M, Aghabarari B, Gil A, Fuel, 90(11), 3382, 2011
  2. Akia M, Yazdani F, Motaee E, Han D, Arandiyan H, Biofuel Res. J., 1, 16, 2014
  3. Endalew AK, Kiros Y, Zanzi R, Biomass Bioenerg., 35(9), 3787, 2011
  4. Robles-Medina A, Gonzalez-Moreno PA, Esteban-Cerdan L, Molina-Grima E, Biotechnol. Adv., 27, 398, 2009
  5. Mostafaei M, Ghobadian B, Barzegar M, Banakar A, Ultrason. Sonochem., 27, 54, 2015
  6. Chanatip S, Surachai K, Chaiyan C, Prasert R, Ruengwit S, Metta C, Arabian J. Chem. (2015), DOI:10.1016/j.arabjc. 2014.12.034.
  7. Abreu FR, Alves MB, Macedo CCS, Zara LF, Suarez PAZ, J. Mol. Catal. A-Chem., 227(1-2), 263, 2005
  8. Vicente G, Coteron A, Martinez M, Aracil J, Ind. Crops Products., 8, 29, 1998
  9. Oha PP, Lau HLN, Chen J, Chong MF, Choo YM, Renew. Sust. Energ. Rev., 16, 5131, 2012
  10. Chakraborty R, Bepari S, Banerjee A, Chem. Eng. J., 165(3), 798, 2010
  11. Afgan NH, Carvalho MG, Energy, 27(8), 739, 2002
  12. Encinar JM, Gonzalez JF, Sabio E, Ramiro MJ, Ind. Eng. Chem. Res., 38(8), 2927, 1999
  13. Long T, Deng YF, Li GH, Gan SC, Chen J, Fuel Process. Technol., 92(7), 1328, 2011
  14. Endalew AK, Kiros Y, Zanzi R, Energy, 36(5), 2693, 2011
  15. Ng JH, Ng HK, Gan S, Clean Technologies Environ. Policy, 12, 459, 2010
  16. Ng JH, Ng HK, Gan S, Clean Technologies Environ. Policy, 12, 213, 2010
  17. Zhang JH, Chen SX, Yang R, Yan YY, Fuel, 89(10), 2939, 2010
  18. Helwani Z, Othman MR, Aziz N, Kim J, Fernando WJN, Appl. Catal. A: Gen., 363(1-2), 1, 2009
  19. Chouhan APS, Sarma AK, Renew. Sust. Energ. Rev., 15, 4378, 2011
  20. Harrington KJ, D’Arcy-Evans C, Ind. Eng. Chem. Process Des. Dev., 24, 314, 1985
  21. Graille J, Lozano P, Pioch D, Geneste P, Oleagineux, 41, 457, 1986
  22. Akbar E, Binitha N, Yaakob Z, Kamarudin SK, Salimon J, Green Chem., 11, 1862, 2009
  23. Ramos MJ, Casas A, Rodriguez L, Romero R, Perez A, Appl. Catal. A: Gen., 346(1-2), 79, 2008
  24. Xie WL, Peng H, Chen LG, Appl. Catal. A: Gen., 300(1), 67, 2006
  25. Samart C, Sreetongkittikul R, Sookman C, Fuel Process. Technol., 90(7-8), 922, 2009
  26. Jeon H, Kim DJ, Kim SJ, Kim JH, Fuel Process. Technol., 116, 325, 2013
  27. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J, Fuel, 87(12), 2798, 2008
  28. Wang JX, Chen KT, Huang ST, Chen KT, Chen CC, J. American Oil Chem. Soc., 89, 1619, 2012
  29. Chen KT, Wang JX. Dai YM, Wang PH, Liou CY, Nien CW, Wu JS, Chen CC, J. Taiwan Institute Chem. Engineers, 44, 622, 2013
  30. Dai YM, Chen KT, Wang PH, Chen CC, Adv. Powder Technol., 27(6), 2432, 2016
  31. Wang JX, Chen KT, Wu JS, Wang PH, Huang ST, Chen CC, Fuel Process. Technol., 104, 167, 2012
  32. Hindryawati N, Maniam GP, Karim MR, Chong KF, Eng. Sci. Technol., Int. J., 17, 95, 2014
  33. Wang JX, Chen KT, Wen BZ, Liao YHB, Chen CC, J. Taiwan Institute Chem. Engineers, 43, 215, 2012
  34. Dai YM, Wu JS, Chen CC, Chen KT, Chem. Eng. J., 280, 370, 2015
  35. Dai YM, Kao IH, Chen CC, J. Taiwan Institute Chem. Eng., 70, 260, 2016
  36. Dai YM, Hsieh JH, Chen CC, J. Chinese Chem. Soc., 61, 803, 2014
  37. Dai YM, Chen KT, Chen CC, Chem. Eng. J., 250, 267, 2014
  38. Freedman B, Butterfield RO, Pryde EH, J. American Oil Chem. Soc., 63, 1375, 1986
  39. Freedman B, Pryde EH, Mounts TL, J. American Oil Chem. Soc., 61, 1638, 1984
  40. Schuchardta U, Serchelia R, Vargas RM, J. Braz. Chem. Soc., 9, 199, 1998
  41. Schwab AW, Baghy MO, Freedman B, Fuel, 66, 1372, 1987
  42. Kawashima A, Matsubara K, Honda K, Bioresour. Technol., 100(2), 696, 2009
  43. Silva CCCM, Ribeiro NFP, Souza MMVM, Aranda DAG, Fuel Process. Technol., 91(2), 205, 2010
  44. Kouzu M, Kasuno T, Tajika M, Sugimoto Y, Yamanaka S, Hidaka J, Fuel, 87(12), 2798, 2008
  45. Shu Q, Zhang Q, Xu GH, Nawaz Z, Wang DZ, Wang JF, Fuel Process. Technol., 90(7-8), 1002, 2009
  46. Watkins RS, Lee AF, Wilson K, Green Chem., 6, 335, 2004
  47. Raqeeb MA, Bhargavi R, J. Chem. Pharmaceutical Res., 7, 670, 2015
  48. Melero J, Iglesias J, Morales G, Green Chem., 11, 1285, 2009
  49. Faisal PA, Hareesh ES, Priji P, Unni KN, Sajith S, Sreedevi S, Josh MS, Benjamin S, Adv. Enzyme Res., 2, 125, 2014
  50. Atapour M, Kariminia HR, Moslehabadi PM, Process Saf. Environ. Protect., 92(2), 179, 2014
  51. Farag HA, El-Maghraby A, Taha NA, Fuel Process. Technol., 92(3), 507, 2011
  52. Olutoye MA, Hameed BH, Appl. Catal. A: Gen., 450, 57, 2013
  53. Wang JX, Chen KT, Wu JS, Wang PH, Huang ST, Chen CC, Fuel Process. Technol., 104, 167, 2012
  54. Marcolli C, Calzaferri G, J. Phys. Chem. B, 101(25), 4925, 1997
  55. Rafiee E, Shahebrahimi S, Feyzi M, Shaterzadeh M, Inter. Nano Lett., 2, 1, 2012
  56. Vasconcelos DCL, Orefice RL, Vasconcelos WL, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 447, 77, 2007
  57. Ortiz-Landerosa J, Lopez-Juarezb R, Romero-Ibarrac IC, Pfeiffer H, Balmori-Ramireza H, Gomez-Yanez C, Particuology, 24, 129, 2015
  58. Mondragon-Gutierrez G, Cruz D, Pfeiffer H, Bulbulian S, Res. Lett. Mater. Sci. (2008), DOI:10.1155/2008/908654.
  59. Li X, Yang H, Cryst. Eng. Commun., 16, 4501, 2014
  60. Hesse KF, Acta Crystallogr. Sect. B-Struct. Sci., 33, 901, 1977
  61. Wen G, Yan ZF, Smith M, Zhang P, Wen B, Fuel, 89(8), 2163, 2010
  62. Liu Y, Liu T, Wang XF, Xu L, Yan YJ, Energy Fuels, 25(3), 1206, 2011
  63. Wang BY, Li SF, Tian SJ, Feng RH, Meng YL, Fuel, 104, 698, 2013
  64. Hamze H, Akia M, Yazdani F, Process Saf. Environ. Protect., 94, 1, 2015
  65. Benjapornkulaphong S, Ngamcharussrivichai C, Bunyakiat K, Chem. Eng. J., 145(3), 468, 2009
  66. Lee HV, Yunus R, Juan JC, Taufiq-Yap YH, Fuel Process. Technol., 92(12), 2420, 2011
  67. Omar WNNW, Amin NAS, Biomass Bioenerg., 35(3), 1329, 2011
  68. Kansedo J, Lee KT, Bhatia S, Biomass Bioenerg., 33(2), 271, 2009
  69. Kansedo J, Lee KT, Chem. Eng. J., 214, 157, 2013
  70. Zabeti M, Daud WMAW, Aroua MK, Appl. Catal. A: Gen., 366(1), 154, 2009
  71. Martinez SL, Romero R, Natividad R, Gonzalez J, Catal. Today, 220, 12, 2014
  72. Rashtizadeh E, Farzaneh F, Talebpour Z, Bioresour. Technol., 154, 32, 2014