Issue
Korean Journal of Chemical Engineering,
Vol.34, No.11, 2811-2822, 2017
Computational fluid dynamics simulation of hydrodynamics in an uncovered unbaffled tank agitated by pitched blade turbines
Computational fluid dynamics (CFD) simulations were applied for evaluating the hydrodynamics characteristics in an uncovered unbaffled tank agitated by pitched blade turbines. A volume of fluid (VOF) method along with a Reynolds stress model (RSM) was used to capture the gas-liquid interface and the turbulence flow in the tank. The reliability and accuracy of the simulations are verified. The simulation results show that the vortex can be divided into central zone and peripheral zone, and flow field in the tank can be divided into forced vortex flow region and free vortex flow region. With the increase of impeller speed, the vortex becomes deeper, while the critical radius of the two zones keeps almost unchanged. The impeller clearance and the rotational direction have little effect on the vortex shape. The vortex becomes deeper with increasing of the impeller diameter or the blade angles at the same rotational speed. Power number is little influenced by the impeller speed, and decreases by about 30% when impeller diameter varies from 0.25T to 0.5T. When blade angle varies from 30 ° to 90 °, power number increases by about 2.32-times. Power number in uncovered unbaffled tank is much smaller than that in baffled tank, but is very close to that in a covered unbaffled tank. The discrepancy of power number in uncovered unbaffled tank and that in covered unbaffled tank is less than 10%.
[References]
  1. Lamberto DJ, Muzzio FJ, Swanson PD, Tonkovich AL, Chem. Eng. Sci., 51(5), 733, 1996
  2. Alvarez MM, Arratia PE, Muzzio FJ, Can. J. Chem. Eng., 80(4), 546, 2002
  3. Hu YY, Liu Z, Yang JC, Cheng Y, Chinese J. Chem. Eng., 61, 2517, 2010
  4. Rousseaux JM, Muhr H, Plasari E, Can. J. Chem. Eng., 79(5), 697, 2001
  5. Hekmat D, Hebel D, Schmid H, Weuster-Botz D, Process Biochem., 42(12), 1649, 2007
  6. Rao AR, Kumar B, J. Chem. Technol. Biotechnol., 82(1), 101, 2007
  7. Rieger F, Ditl P, Noval V, Chem. Eng. Sci., 34, 397, 1979
  8. Rao AR, Kumar B, Patel AK, Science Asia, 35, 183, 2009
  9. Zlokarnik M, Chem. Eng. Technol., 43, 1028, 1971
  10. Ciofalo M, Brucato A, Grisafi F, Torraca N, Chem. Eng. Sci., 51, 3357, 1996
  11. MARKOPOULOS J, KONTOGEORGAKI E, Chem. Eng. Technol., 18(1), 68, 1995
  12. Nagata S, Mixing: Principles and Applications, Wiley, New York (1975).
  13. Grisafi F, Brucato A, Rizzuti L, Inst. Chem. Eng. Symp. Ser., 136, 571, 1994
  14. Haque JN, Mahmud T, Roberts KJ, Rhodes D, Ind. Eng. Chem. Res., 45(8), 2881, 2006
  15. Haque JN, Mahmud T, Roberts KJ, Liang JK, White G, Wilkinson D, Rhodes D, Can. J. Chem. Eng., 89(4), 745, 2011
  16. Scargiali F, Busciglio A, Grisafi F, Tamburini A, Micale G, Brucato A, Ind. Eng. Chem. Res., 52(42), 14998, 2013
  17. Rao AR, Patel AK, Kumar B, J. Chem. Technol. Biotechnol., 85(6), 805, 2010
  18. Rao AR, Kumar B, J. Hydraul. Div., Am. Soc. Civ. Eng., 135, 38, 2009
  19. Assirelli M, Bujalski W, Eaglesham A, Nienow AW, Chem. Eng. Sci., 63(1), 35, 2008
  20. Busciglio A, Grisafi F, Scargiali F, Brucato A, Chem. Eng. J., 254, 201, 2014
  21. Glover GMC, Fitzpatrick JJ, Chem. Eng. J., 127(1-3), 11, 2007
  22. Yang FL, Zhou SJ, Chem. Biochem. Eng. Q., 29, 395, 2015
  23. Lamarque N, Zoppe B, Lebaigue O, Dolias Y, Bertrand M, Ducros F, Chem. Eng. Sci., 65(15), 4307, 2010
  24. Speziale CG, Sarkar S, Gatski TB, J. Fluid Mech., 277, 245, 1991
  25. Nemdili F, Azzi A, Theodoridis G, Jubran BA, Heat Transf. Eng., 11, 950, 2008
  26. Vallee C, Hohne T, Prasser HM, Suhnel T, Nucl. Eng. Des., 238, 637, 2008
  27. Tamburini Alessandro, Cipollina Andrea, Micale Giorgio, Scargiali Francesca, Brucato Alberto, Ind. Eng. Chem. Res., 55(27), 7535, 2016
  28. Markopoulos J, Kontogeorgaki E, Chem. Ind. Technol., 65, 839, 1993
  29. Scargiali F, Busciglio A, Grisafi F, Brucato A, Biochem. Eng. J., 82, 41, 2014
  30. Driss Z, Bouzgarrou G, Chtourou W, Kchaou H, Abid MS, Eur. J. Mech. B-Fluid, 29, 236, 2010
  31. Armenante PM, Luo C, Chou CC, Fort I, Medek J, Chem. Eng. Sci., 20, 3483, 1997
  32. Tamburini A, Brucato A, Busciglio A, Cipollina A, Grisafi F, Micale G, Scargiali F, Vella G, Ind. Eng. Chem. Res., 53(23), 9587, 2014
  33. Bates RL, Fondy PL, Corpstein RR, I. and Ec Proc. Des. Dev., 2, 310, 1963
  34. Rewatkar VB, Raghava Rao KSMS, Joshi JB, Chem. Eng. Commun., 88, 69, 1990
  35. Montante G, Lee KC, Brucato A, Yianneskis M, Chem. Eng. Sci., 56(12), 3751, 2001
  36. Ibrahim S, Nienow AW, Trans. IChemE. Eng. Res. Des., 73, 485, 1995
  37. Yapici K, Karasozen B, Schafer M, Uludag Y, Chem. Eng. Process., 47, 1340, 2008
  38. Smit L, During J, Belgium, Bruges 2: 633 (1991).
  39. Ge CY, Wang JJ, Gu XP, Feng LF, Chem. Eng. Res. Des., 92(6), 1027, 2014
  40. Chapple D, Kresta SM, Wall A, Afacan A, Trans. IChem. E., 80, 364, 2002
  41. Mostek M, Kukukova A, Jahoda M, Machon V, Chem. Pap., 59, 380, 2005
  42. Kuncewicz C, Pietrzykowski M, Chem. Eng. Sci., 56(15), 4659, 2001
  43. Scargiali F, Tamburini A, Caputo G, Micale G, Chem. Eng. Res. Des., 123, 99, 2017
  44. Le Lan A, Angelino H, Chem. Eng. Sci., 27, 1969, 1972