Issue
Korean Journal of Chemical Engineering,
Vol.34, No.8, 2241-2247, 2017
New hybrid agarose/Cu-Bioglass® biomaterials for antibacterial coatings
Agarose hydrogels, combined with 45S5 Bioglass®, were elaborated to serve as copper delivery systems. Our aim was to study the antibacterial properties of these hydrogels. The results show that the amount of glass does not influence the stiffness properties, but it improves the hydrophilicity and the swelling profile of agarose hydrogel. Two bacterial strains, Bacillus sp. 4J6 and Pseudomonas aeruginosa sp. PAO1, were chosen. Their retention on the substrates was analyzed by confocal laser scanning microscopy. The mechanical characteristics and the release of copper have an effect on the bacterial adhesion and the biofilm formation. All the obtained results indicate that these hydrogels could be adapted to a potential application to the antibacterial coatings.
[References]
  1. Chen G, Ushida T, Tateishi T, Macromol. Biosci., 2, 67, 2002
  2. Barbosa MA, Granja PL, Barrias CC, Amaral IF, ITBMRBM, 26, 212, 2005
  3. Wers E, Oudadesse H, Lefeuvre B, Merdrignac-Conanec O, Barroug A, Appl. Surf. Sci., 353, 200, 2015
  4. Nie L, Chen D, Suo J, Zou P, Feng S, Yang Q, Yang S, Ye S, Colloids Surf. B: Biointerfaces, 100, 169, 2012
  5. Kneser U, Kaufmann PM, Fiegel HC, Pollok JM, Kluth D, Herbst H, Rogiers X, J. Biomed. Mater. Res., 47, 494, 1999
  6. Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP, Tissue Eng., 6, 119, 2000
  7. Ishaug SL, Crane GM, Miller MJ, Yasko AW, Yaszemski MJ, Mikos AG, J. Biomed. Mater. Res., 6, 17, 1997
  8. Trautner BW, Darouiche RO, Am. J. Infect. Control., 32, 177, 2004
  9. Toh WS, Loh XJ, Mat. Sci. Eng. C, 45, 690, 2014
  10. Rao R, Perterson A, Ceccarili J, Putnam A, Stegemann J, Angiogenesis, 15, 253, 2012
  11. Chiu LLY, Radisic M, J. Control. Release, 155, 376, 2011
  12. Naderi-Meshkin H, Andreas K, Matin MM, Sittinger M, Bidkhori HR, Ahmadiankia N, Bahrami AR, Ringe J, Cell. Biol. Int., 38, 72, 2014
  13. Kong H, Mooney D, Polysaccharide- based hydrogels in tissue engineering, New York (2005).
  14. Zamora-Mora V, Velasco D, Hernandez R, Mijangos C, Kumacheva E, Carbohydr. Polym., 111, 348, 2014
  15. Wers E, Lefeuvre B, Pellen-Mussi P, Novella A, Oudadesse H, Mat. Sci. Eng. C, 61, 133, 2016
  16. Bellantone M, Coleman NJ, Hench LL, J. Biomed. Mater. Res., 51, 484, 2000
  17. Barbucci R, Lamponi S, Magnani A, Piras FM, Rossi A, Weber E, Biomacromolecules, 6(1), 212, 2005
  18. Giavaresi P, Torricelli PM, Fornasari R, Giardino RB, Leone G, Biomaterials, 26, 3001, 2005
  19. Hu GF, J. Cell. Biochem., 69, 326, 1998
  20. Barangou LM, Daubert CR, Foegeding EA, Food Hydrocolloids, 20, 184, 2006
  21. Smith EE, Buckley DG, Wu Z, Saenphimmachak C, Hoffman LR, D’Argenio DA, Miller SI, Ramsey BW, Speert DP, Moskowitz SM, Burns JL, Kaul R. Olson MV, Proc. Natl. Acad. Sci., 103, 8487, 2006
  22. Guegan C, Garderes J, Le Pennec G, Gaillard F, Fay F, Linossier I, Herry JM, Fontaine MNB, Vallee-Rehel K, Colloids Surf. B: Biointerfaces, 114, 193, 2014
  23. Kim SJ, Park SJ, Kim SI, React. Funct. Polym., 55(1), 53, 2003
  24. Chen J, Park K, J. Control. Release, 65, 73, 2000
  25. Rhim JW, Lee SB, Hong SI, J. Food Sci., 76, 40, 2011
  26. Institute of Medicine (US) Panel on Micronutrients, Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc, National Academies Press (2001).
  27. Moore RJ, Hall CB, Carlson EC, Lukaski HC, Klevay LM, J. Lab. Clin. Med., 13, 516, 1989