Issue
Korean Journal of Chemical Engineering,
Vol.34, No.7, 2099-2109, 2017
Optimization and analysis of reaction injection molding of polydicyclopentadiene using response surface methodology
Reaction injection molding (RIM) process conditions for polydicyclopentadiene (PolyDCPD) were optimized by using a Box-Behnken design (BBD) from the response surface methodology (RSM). The RIM process parameters, such as smoke time, exotherm time, highest exotherm and PolyDCPD conversion, were tuned by changing the variables (the amount of catalyst, cocatalyst and moderator). Under the optimized condition, the ring-opening metathesis polymerization reaction of dicyclopentadiene did not occur within 100 s, the maximum temperature was reached within 4min, and the polydicyclopentadiene conversion was over 98%. Therefore, dicyclopentadiene could be safely put into the mold in a total cycle time of less than 6min and produce PolyDCPD with mechanical properties sufficient for industry applications.
[References]
  1. Cheah LW, U.S, Doctoral Thesis, Massachusetts Institute of Technology (2010).
  2. Lutsey N, Institute of Transportation Studies, University of California (2010).
  3. Sinha R, Pelot DD, Zhou ZP, Rahman A, Wu XF, Yarin AL, J. Mater. Chem., 22, 9138, 2012
  4. Hu F, Du J, Zheng Y, Polym. Compos., 35, 1918, 2014
  5. Mol JC, J. Mol. Catal. A-Chem., 213(1), 39, 2004
  6. Jamroz ME, Gałka S, Dobrowolski JC, J. Mol. Struct., 634, 225, 2003
  7. Li H, Wang Z, He B, J. Mol. Catal. A-Chem., 147, 83, 1999
  8. Shan W, Mei Y, Polym. Sci. Ser. B, 55, 344, 2013
  9. Hsu HC, Wang SJ, Ou JDY, Wong DSH, Ind. Eng. Chem. Res., 54(40), 9798, 2015
  10. Bergstrom C, Koskinen J, Halme E, Lindstrom M, Perala M, US Patent, 6,294,706B1 (2001).
  11. Rule JD, Moore JS, Macromolecules, 35(21), 7878, 2002
  12. Zou JJ, Zhang XW, Kong J, Wang L, Fuel, 87(17-18), 3655, 2008
  13. Bruno TJ, Huber ML, Lemmon EW, Perkins RA, National Institute of Standards and Technology (2006).
  14. Xing E, Zhang X, Wang L, Mi Z, Green Chem., 9, 589, 2007
  15. Special Reports, Opportunities in C5 Chemicals: A Business Analysis prospectus, NexantThinkingTM (http://thinking.nexant.com/) (2014).
  16. C5 Value Chain Study: From Cracker to Key C5 Derivative Applications for Isoprene, DCPD and Piperylene, IHS Chemical, Special Report Prospectus (2015).
  17. Global Polydicyclopentadiene (PDCPD) Industry Report 2016, QYR Chemical & Material Research Center (2016).
  18. Takahiro M, The latest technologies and applications of RIM molding (DCPD), Plastic Age (2008).
  19. Sojitz New Release, July 8, Sojitz corporation, (https://www.sojitz. com/en/news/yearly/2008/) (2008).
  20. Bogomolova MN, Zemlyakov DI, Sidorenko NI, Ashirov RV, Rusakov DA, Chaikovskii VK, Int. Polymer Sci. Technol., 40, 7, 2012
  21. Yao Z, Zhou LW, Dai BB, Cao K, J. Appl. Polym. Sci., 125(4), 2489, 2012
  22. Grubbs RH, Tetrahedron, 60, 7117, 2004
  23. Doughty S, Recher G, Yang YS, Kunstst. Ger. Plast., 82, 12, 1992
  24. Elder RM, Andzelm JW, Sirk TW, Chem. Phys. Lett., 637, 103, 2015
  25. Gong L, Liu K, Ou E, Xu F, Lu Y, Wang Z, Gao T, Yang Z, Xu W, RSC Adv., 5, 26185, 2015
  26. Lee EJ, Kim HS, Lee BK, Hwang WS, Sung IK, Lee IM, Bull. Korean Chem. Soc., 33, 4131, 2012
  27. Kovacic S, Acta Chim. Slov., 60, 448, 2013
  28. Hong CH, Song SW, Nam BU, Cha BJ, Kim BJ, Polym. Korea, 30(4), 311, 2006
  29. Ofstead EA, Calderon N, Makromol. Chem., 154, 21, 1972
  30. Amass AJ, Lotfipour M, Zurimendi JA, Tighe BJ, Thompson C, Makromol. Chem., 188, 2121, 1987
  31. Layer RW, US Patent, 4,484,010 (1993).
  32. Ledoux N, Doctoral Thesis, Universiteit Gent (2007).
  33. Jeong W, Kessler MR, Chem. Mater., 20, 7060, 2008
  34. Bluestone S, Heister SD, Son SF, 46th AIAA/ASME/SAE/ ASEE Joint Propulsion Conference & Exhibit, Nashville, TN, 1 (2010).
  35. Kroschwitz JI, Howe-Grant M, Encyclopedia of Chemical Technology, Wiley Interscience, New York, 17, 829 (1996).
  36. Andjelkovic DD, Larock RC, Biomacromolecules, 7(3), 927, 2006
  37. Kong WS, Ju TJ, Park JH, Int. J. Adhes. Adhes., 38, 7, 2012
  38. Teixeira A, Ribeiro B, Rapid Product Development, 1 (2010).
  39. Monsaert S, Ledoux N, Drozdzak R, Verpoort F, J. Polym. Sci. A: Polym. Chem., 48(2), 302, 2010
  40. Klosiewicz DW, US Patent, 4,520,181 (1985).
  41. Astruc D, New J. Chem., 29, 42, 2005
  42. Kelsey DR, Handlin DL, Narayana M, Scardino BM, J. Polym. Sci. A: Polym. Chem., 35(14), 3027, 1997
  43. Yang YS, Lafontaine E, Mortaigne B, Polymer, 38(5), 1121, 1997
  44. Gangadharan D, Sivaramakrishnan S, Nampoothiri KM, Sukumaran RK, Pandey A, Bioresour. Technol., 99(11), 4597, 2008
  45. Beikdashti MH, Forootanfar H, Safiarian MS, Ameri A, Ghahremani MH, Khoshayand MR, Faramarzia MA, J. Taiwan Inst. Chem. Eng., 43, 670, 2012
  46. Box GEP, Behnken DW, Technometrics, 2, 455, 1960
  47. Montogomery DC, Design and Analysis of Experiments, Wiley, New York (2001).
  48. Singh K, Srivastava G, Talat M, Srivastava ON, Kayastha AM, Biophys. Rep., 3, 18, 2015
  49. Ali CH, Mbadinga SM, Liu JF, Yang SZ, Gu JD, Mu BZ, J. Taiwan Inst. Chem. Eng., 52, 7, 2015
  50. Jafari AJ, Kakavandi B, Kalantary RR, Gharibi H, Asadi A, Azari A, Babaei AA, Takdastan A, Korean J. Chem. Eng., 33(10), 2878, 2016
  51. Chen L, Yin P, Qu RJ, Chen XY, Xu Q, Tang QH, Chem. Eng. J., 173(2), 583, 2011
  52. Klosiewicz DW, US Patent, 4,400,340 (1983).
  53. Martin AE, US Patent, 4,918,039 (1988).
  54. Yang YS, Lafontaine E, Mortaigne B, Polymer, 38(5), 1121, 1997
  55. Le Gaca PY, Choqueusea D, Parisb M, Recherc G, Zimmerd C, Melote D, Polym. Degrad. Stabil., 98, 809, 2013