Issue
Korean Journal of Chemical Engineering,
Vol.34, No.7, 2086-2091, 2017
Synthesis of colloidal plasmonic microspheres via spontaneous formation and three-dimensional assembly of metal nanoparticles
We report the synthesis of colloidal plasmonic microspheres by taking advantage of emulsions of polydimethylsiloxane (PDMS) in metal precursor solution. Within the emulsion, both the spontaneous formation and threedimensional (3D) assembly of metal nanoparticles take place at room temperature. The number of the nanoparticles being assembled in the microsphere is controllable according to the concentration of a metal precursor. In addition, owing to the surface charge and porosity of PDMS, positively charged and neutral molecules can be more concentrated in the plasmonic microsphere. We use this plasmonic microsphere for the detection of environmentally and biologically important molecules via surface-enhanced Raman spectroscopy, since 3D assembly of metal nanoparticles in the microsphere is size-comparable to a probed volume of incident light.
[References]
  1. Vogel N, Retsch M, Fustin CA, del Campo A, Jonas U, Chem. Rev., 115(13), 6265, 2015
  2. Senesi AJ, Eichelsdoerfer DJ, Macfarlane RJ, Jones MR, Auyeung E, Lee B, Mirkin CA, Angew. Chem.-Int. Edit., 52, 6624, 2013
  3. Yap FL, Thoniyot P, Krishnan S, Krishnamoorthy S, ACS Nano, 6, 2056, 2012
  4. Huang HJ, Yang SB, Vajtai R, Wang X, Ajayan PM, Adv. Mater., 26(30), 5160, 2014
  5. Masse P, Mornet S, Duguet E, Treguer-Delapierre M, Ravaine S, Iazzolino A, Salmon JB, Leng J, Langmuir, 29(6), 1790, 2013
  6. Shen XB, Song C, Wang JY, Shi DW, Wang ZA, Liu N, Ding BQ, J. Am. Chem. Soc., 134(1), 146, 2012
  7. Alvarez-Puebla RA, Agarwal A, Manna P, Khanal BP, Aldeanue-va-Potel P, Carbo-Argibay E, Pazos-Perez N, Vigderman L, Zubarev ER, Kotov NA, Liz-Marzan LM, Proc. Natl. Acad. Sci. U.S.A., 108, 8157, 2011
  8. Chen MS, Phang IY, Lee MR, Yang JKW, Ling XY, Langmuir, 29(23), 7061, 2013
  9. Wang M, Jing N, Chou IH, Cote GL, Kameoka J, Lab Chip, 7, 630, 2007
  10. Hwang H, Han D, Oh YJ, Cho YK, Jeong KH, Park JK, Lab Chip, 11, 2518, 2011
  11. O'Brien MN, Jones MR, Lee B, Mirkin CA, Nat. Mater., 14(8), 833, 2015
  12. Wang Y, Zeiri O, Raula M, Ouay BL, Stellacci F, Weinstock IA, Nat. Nanotech. [Online early access]. DOI:10.1038/NNANO.2016.233. Published Online: Nov 14, 2016. http://www.nature.com/nnano/journal/vaop/ncurrent/full/nnano.2016.233.html (accessed Feb 6, 2017).
  13. Zhang Q, Xu JJ, Liu Y, Chen HY, Lab Chip, 8, 352, 2008
  14. Goyal A, Kumar A, Patra PK, Mahendra S, Tabatabaei S, Alvarez PJJ, John G, Ajayan PM, Macromol. Rapid Commun., 30(13), 1116, 2009
  15. Fan DH, Yuan S, Shen Y, Colloids Surf. B: Biointerfaces, 75, 608, 2010
  16. Zhao LY, He R, Rim KT, Schiros T, Kim KS, Zhou H, Gutierrez C, Chockalingam SP, Arguello CJ, Palova L, Nordlund D, Hybertsen MS, Reichman DR, Heinz TF, Kim P, Pinczuk A, Flynn GW, Pasupathy AN, Science, 333(6045), 999, 2011
  17. Kim YN, Yoo SH, Cho SO, J. Phys. Chem. C, 113, 618, 2009
  18. Prestidge CA, Barnes T, Simovic S, Adv. Colloid Interface Sci., 108, 105, 2004
  19. Choi SJ, Kwon TH, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK, ACS Appl. Mater. Interfaces, 3, 4552, 2011
  20. Song Y, Qu K, Xu C, Ren J, Qu X, Chem. Commun., 46, 6572, 2010
  21. Salustri C, Barbati G, Ghidoni R, Quintiliani L, Ciappina S, Binetti G, Squitti R, Clin. Neurophysiol, 121, 502, 2010
  22. Table of Regulated Drinking Water. https://www.epa.gov/groundwater- and-drinking-water/table-regulated-drinking-water-contaminants (accessed Feb 6, 2017).