Issue
Korean Journal of Chemical Engineering,
Vol.34, No.7, 2079-2085, 2017
Enhanced sunlight photocatalytic activity of silver nanoparticles decorated on reduced graphene oxide sheet
A facile and straightforward method has been developed to synthesize silver nanoparticles decorated on reduced graphene oxide (RGO) nanosheets through hydrothermal reaction. The composite was characterized by XRD, UV-Visible spectroscopy, SEM and TEM techniques. In this synthesized RGO-Ag nanocomposite, the Ag nanoparticles size ranges 30-50 nm. Moreover, the RGO-Ag composites exhibited excellent photocatalytic activity towards the degradation of methylene blue (MB) in presence of sunlight. This photocatalytic reaction is completed within 20 min and the rate of reaction depends on the amount of RGO present in the nanocomposites.
[References]
  1. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P, Stormer HL, Solid State Commun., 146, 351, 2008
  2. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN, Nano Lett., 8, 902, 2008
  3. Lee C, Wei X, Kysar JW, Hone J, Science, 321, 385, 2008
  4. Geim AK, Science, 324, 1530, 2009
  5. Peigney A, Laurent CH, Flahaut E, Bacsa RR, Rousset A, Carbon, 39, 507, 2001
  6. Xiang Q, Yu J, Jaroniec M, Chem. Soc. Rev., 41, 782, 2012
  7. An X, Yu JC, RSC Adv., 1, 1426, 2011
  8. Xiong Z, Zhang L, Ma J, Zhao XS, Chem. Commun., 46, 6099, 2010
  9. Roy P, Periasamy AP, Liang CT, Chang HT, Environ. Sci. Technol., 47, 6688, 2013
  10. Li Y, Gaob W, Ci L, Wang C, Ajayan PM, Carbon, 48, 1124, 2010
  11. Huang J, Zhang L, Chen B, Ji N, Chen F, Zhang Y, Zhang Z, Nanoscale, 2, 2733, 2010
  12. Peng L, Zhu Y, Li H, Yu G, Small, 12, 6183, 2016
  13. Zhang X, Hou L, Ciesielski A, Samori P, Adv. Energy Mater., 6, 160067, 2016
  14. Protich Z, Wong P, Santhanam KSV, ACS Sustainable Chem. Eng., 4, 6177, 2016
  15. Low J, Yu J, Ho W, J. Phys. Chem. Lett., 6, 4244, 2015
  16. Nishina Y, Miyata J, Kawai R, Gotoh K, RSC Adv., 2, 9380, 2012
  17. Zhen SJ, Fu WL, Chen BB, Zhan L, Zou HY, Gao MX, Huang CZ, RSC Adv., 6, 93645, 2016
  18. Yan L, Chang YN, Yin W, Tian G, Zhou L, Hu Z, Xing G, Gu Z, Zhao Y, Adv. Eng. Mater., 17, 523, 2015
  19. Wang J, Zhang XB, Wang ZL, Wang LM, Zhang Y, Energy Environ. Sci., 5, 6885, 2012
  20. Pattnaik S, Swain K, Lin Z, J. Mater. Chem. B, 4, 7813, 2016
  21. Moussa S, Siamaki AR, Gupton BF, El-Shall MS, ACS Catal., 2, 145, 2012
  22. Zhang N, Yang MQ, Liu SQ, Sun YG, Xu YJ, Chem. Rev., 115(18), 10307, 2015
  23. Han C, Zhang N, Xu YJ, Nano Today, 11(3), 351, 2016
  24. Yang MQ, Zhang N, Pagliaro M, Xu YJ, Chem. Soc. Rev., 43, 8240, 2014
  25. Yang MQ, Han C, Zhang N, Xu YJ, Nanoscale, 7, 18062, 2015
  26. Lu KQ, Zhang N, Han C, Li F, Chen Z, Xu YJ, J. Phys. Chem. C, 120, 27091, 2016
  27. Zhang N, Yang MQ, Tang ZR, Xu YJ, ACS Nano, 8, 623, 2014
  28. Zhu M, Chen P, Liu M, Acs Nano, 5, 4529, 2011
  29. Boller M, Water Sci. Technol., 35, 1, 1997
  30. Awaleh MO, Soubaneh YD, Hydrol. Current Res., 5, 100016, 2014
  31. L. Nelik and M. Zarreii, Wastewater treatment: present challenges, future horizons, Water & Wastes Digest, February 15 (2010).
  32. Bhakya S, Muthukrishnan S, Sukumaran M, Muthukumar M, Kumar TS, Rao MV, J. Bioremed. Biodeg., 6, 100031, 2015
  33. Wu ZC, Zhang Y, Tao TX, Zhang LF, Fong H, Appl. Surf. Sci., 257(3), 1092, 2010
  34. Kavitha SR, Umadevi M, Janani SR, Balakrishnan T, Ramanibai R, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 127, 115, 2014
  35. Chaturvedia S, Dave PN, Shah NK, J. Saudi Chem. Soc., 16, 307, 2012
  36. Radich JG, Krenselewski AL, Zhu J, Kamat PV, Chem. Mater., 26, 4662, 2014
  37. Hummers WS, Offeman RE, J. Am. Chem. Soc., 80, 1339, 1958
  38. Sharma S, Ganguly A, Papakonstantinou P, Miao X, Li M, Hutchison JL, Delichatsios M, Ukleja S, J. Phys. Chem. C, 114, 19459, 2010
  39. Sanli LI, Bayram V, Yarar B, Ghobadi S, Gursel SA, Int. J. Hydrog. Energy, 41(5), 3414, 2016
  40. Kumar H, Rani R, Int. J. Eng. Inn. Telnology, 3, 344, 2013
  41. Mendieta RT, Espinosa DV, Sabater S, Lancis J, Vega GM, Mata JA, Sci. Rep., 6, 30478, 2016
  42. Cong Y, Zhang J, Chen F, Anpo M, J. Phys. Chem. C, 111, 6976, 2007
  43. Chen XF, Wang XC, Hou YD, Huang JH, Wu L, Fu XZ, J. Catal., 255(1), 59, 2008
  44. Chen S, Zhu J, Wu X, Han Q, Wang X, ACS Nano, 4, 2822, 2010
  45. Stanek KS, Kisielewska A, Ginter J, Bałuszynska K, Piwonski I, RSC Adv., 6, 60056, 2016
  46. Fernandez-Merino MJ, Guardia L, Paredes JI, Villar-Rodil S, Solis-Fernandez P, Martinez-Alonso A, Tascon JMD, J. Phys. Chem. C, 114, 6426, 2010
  47. Tatarchuk VV, Sergievskaya AP, Korda TM, Druzhinina IA, Zaikovsky VI, Chem. Mater., 25, 3570, 2013
  48. Ostwald W, Z. Phys. Chem., 34, 495, 1900
  49. See T, Pandikumar A, Ngee L, Ming H, Hua C, Catal. Sci. Technol., 4, 4396, 2014
  50. Chen T, Zheng Y, Lin J, Chen G, J. Am. Soc. Mass Spectrom., 19, 997, 2008
  51. Roy K, Sarkar CK, Ghosh CK, Appl. Nanosci., 5, 953, 2015
  52. Ren Z, Zhang J, Xiao FX, Xiao G, J. Mater. Chem. A, 2, 5330, 2014
  53. Aihua Y, Wenqing F, Qinghong Z, Weiping D, Ye W, Catal. Sci. Technol., 2, 969, 2012
  54. Jiang N, Xiu Z, Xie Z, Li H, Zhao G, Wang W, Wu Y, Hao X, New J. Chem., 38, 4312, 2014
  55. Wang X, Tian H, Yang Y, Wang H, Wang S, Zheng W, Liu Y, J. Alloy. Compd., 524, 5, 2012
  56. Zhang Y, Zhang N, Tang ZR, Xu YJ, J. Phys. Chem. C, 118, 5299, 2014
  57. Tang ZR, Zhang Y, Zhangab N, Xu YJ, Nanoscale, 7, 7030, 2015