Issue
Korean Journal of Chemical Engineering,
Vol.34, No.7, 1905-1913, 2017
Performance evaluation of a novel reactor configuration for oxidative dehydrogenation of ethane to ethylene
A one-dimensional non-isothermal steady state model was developed to simulate the performance of three-reactor configurations for the oxidative dehydrogenation of ethane (ODHE) to ethylene. These configurations consist of side feeding reactor (SFR), conventional fixed bed reactor (CFBR) and membrane reactor (MR). The performance of these reactors was compared in the terms of C2H6 conversion, C2H4 and CO2 selectivity and temperature profiles. The use of sectional air injections on the wall of SFR with a limited number of injection points showed that the performance of reactor significantly improves and optimum pattern of oxygen consumption is also obtained. Moreover, our SFR with a liquid coolant medium operates in an effectively controlled temperature profile that is comparable with that of the MR, which is cooled by a coolant stream of air. Hence, an enhancement in the level of selectivity is obtained for the SFR configuration. Consequently, the side feeding procedure can decrease the high operating temperature problem and low ethylene selectivity in the ODHE process. According to obtained results, the SFR would be a proper alternative for both the MR and CFBR.
[References]
  1. Weng W, Davies M, Whiting G, Solsona B, Kiely CJ, Carley AF, Taylor SH, PCCP, 13, 17395, 2011
  2. Popescu I, Skoufa Z, Heracleous E, Lemonidou A, Marcu IC, PCCP, 17, 8138, 2015
  3. Tsilomelekis G, Boghosian S, PCCP, 14, 2216, 2012
  4. Lin Z, Zhong S, Grierson D, J. Exp. Bot., 60, 3311, 2009
  5. McCoy M, Reisch M, Tullo A, Short P, Tremblay J, Storck W, Chem. Eng. News, 84, 59, 2006
  6. Rahmani F, Haghighi M, Korean J. Chem. Eng., 33(9), 2555, 2016
  7. Ahchieva D, Peglow M, Heinrich S, Morl L, Wolff T, Klose F, Appl. Catal. A: Gen., 296, 176, 2005
  8. Cavani F, Ballarini N, Cericola A, Catal. Today, 127(1-4), 113, 2007
  9. Yang JI, Kim JN, Cho SH, Krishnamurthy KR, Korean J. Chem. Eng., 21(2), 381, 2004
  10. Rose LM, Chemical reactor design in practice, Elsevier Scientific Pub. Co. (1981).
  11. Kong SJ, Jun JH, Yoon KJ, Korean J. Chem. Eng., 21(4), 793, 2004
  12. Moon WS, Park SB, Yang SM, Korean J. Chem. Eng., 15(2), 136, 1998
  13. Arpentinier P, Cavani F, Trifiro F, The Technology of Catalytic Oxidations, Technip, Paris (2001).
  14. Al-Sherehy FA, Adris AM, Soliman MA, Hughes R, Chem. Eng. Sci., 53(23), 3965, 1998
  15. Armor J, Appl. Catal., 49, 1, 1989
  16. Zaman J, Chakma A, J. Membr. Sci., 92(1), 1, 1994
  17. Wang HH, Cong Y, Yang WS, Catal. Today, 82(1-4), 157, 2003
  18. Pedernera M, Mallada R, Menendez M, Santamaria J, AIChE J., 46(12), 2489, 2000
  19. Rodriguez MAL, Ardissone DE, Lemonidou AA, Heracleous E, Lopez EL, Pedernera MN, Borio DO, Ind. Eng. Chem. Res., 48, 1090, 2008
  20. Tsai CY, Dixon AG, Moser WR, Ma YH, AIChE J., 43(11), 2741, 1997
  21. Tellez C, Menendez M, Santamaria J, AIChE J., 43(3), 777, 1997
  22. Lopez E, Heracleous E, Lemonidou AA, Borio DO, Chem. Eng. J., 145(2), 308, 2008
  23. Kao YK, Lei L, Lin YS, Ind. Eng. Chem. Res., 36(9), 3583, 1997
  24. Rodriguez ML, Ardissone DE, Heracleous E, Lemonidou AA, Lopez E, Pedernera MN, Borio DO, Catal. Today, 157(1-4), 303, 2010
  25. Dashliborun AM, Fatemi S, Najafabadi AT, Int. J. Hydrog. Energy, 38(4), 1901, 2013
  26. Kiatkittipong W, Tagawa T, Goto S, Assabumrungrat S, Silpasup K, Praserthdam P, Chem. Eng. J., 115(1-2), 63, 2005
  27. Heracleous E, Lemonidou AA, J. Catal., 237(1), 175, 2006
  28. Heracleous E, Lemonidou AA, J. Catal., 237(1), 162, 2006
  29. Rodriguez ML, Ardissone DE, Lopez E, Pedernera MN, Borioi DO, Ind. Eng. Chem. Res., 50(5), 2690, 2011
  30. Munro M, J. Am. Ceram. Soc., 80, 1919, 1997
  31. Froment GF, Bischoff KB, De Wilde J, Chemical reactor analysis and design, Wiley New York (1990).
  32. Kern DQ, Process heat transfer, Tata McGraw-Hill Education (1950).
  33. Skoufa Z, Heracleous E, Lemonidou AA, Chem. Eng. Sci., 84, 48, 2012