Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1822-1826, 2017
Enhanced photoactivity of stable colloidal TiO2 nanoparticles prepared in water by nanosecond infrared laser pulses
A simple laser ablation technique was used to prepare a stable colloidal TiO2 suspension in pure water. A transparent TiO2 aqueous solution was obtained within a few minutes and its photoactivity for the degradation of methylene blue was measured to be higher than that of commercial TiO2 nanoparticles. SEM analysis revealed that the average size of the nanoparticles increased from 20 to 40 nm as the laser power was raised from 0.5 to 2W. The variation in size, however, had little influence on the resulting photodegradation rate under the given condition. Instead, the photodegradation rate is related to the number of colloidal TiO2 particles in the aqueous solution, which increases proportionally to the ablation time. As the TiO2 particle density increases, however, the photoactivity is measured to be gradually reduced due to the formation of TiO2 aggregates. Thus, the optimum ablation time is 10-30 min under our ablation condition. Our results show that well-dispersed small TiO2 nanoparticles of about a few tens nm can be readily formed by laser ablation within only a few minutes and can be used as highly efficient photocatalysts for photocatalytic remediation of water.
[References]
  1. Intartaglia R, Das G, Bagga K, Gopalakrishnan A, Genovese A, Povia M, Fabrizio ED, Cingolani R, Diaspro A, Brandi F, Phys. Chem. Chem. Phys., 15, 3075, 2013
  2. Barcikowski S, Compagnini G, Phys. Chem. Chem. Phys., 15, 3022, 2013
  3. Itina TE, J. Phys. Chem. C, 115, 5044, 2011
  4. Lin BC, Shen P, Chen SY, J. Phys. Chem. C, 115, 5003, 2011
  5. Intartaglia R, Bagga K, Brandi F, Das G, Genovese A, Fabrizio ED, Diaspro A, J. Phys. Chem. C, 115, 5012, 2011
  6. Ikeda M, Kusumoto Y, Yang H, Somekawa S, Uenjyo H, Abdulla-Al-Mamun M, Horie Y, Catal. Commun., 9, 1329, 2008
  7. Wang HQ, Koshizaki N, Li L, Jia LC, Kawaguchi K, Li XY, Pyatenko A, Swiatkowska-Warkocka Z, Bando Y, Golberg D, Adv. Mater., 23(16), 1865, 2011
  8. Hashimoto K, Irie H, Fujishima A, Jpn. J. Appl. Phys., 44, 8269, 2005
  9. Ni M, Leung MKH, Leung DYC, Sumathy K, Renew. Sust. Energ. Rev., 11, 401, 2007
  10. Teh CY, Wu TY, Juan JC, Chem. Eng. J., In Press (2017), DOI:10.1016/j.cej.2017.01.001.
  11. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735, 1995
  12. Kumar SG, Devi LG, J. Phys. Chem. A, 115(46), 13211, 2011
  13. Landis EC, Phillips KC, Mazur E, Friend CM, J. Appl. Phys., 112, 063108, 2012
  14. Jandova V, Kupcik J, Bastl Z, Subrt J, Pola J, Solid State Sci., 19, 104, 2013
  15. De Bonis A, Galasso A, Ibris N, Laurita A, Santagata A, Teghil R, Appl. Surf. Sci., 268, 571, 2013
  16. Huang CN, Bow JS, Zheng Y, Chen SY, Ho N, Shen P, Nanoscale Res. Lett., 5, 972, 2010
  17. Chang EC, Lin BC, Shen P, Chen SY, J. Nanosci. Nanotechnol., 12, 8337, 2012
  18. Nath A, Laha SS, Khare A, Appl. Surf. Sci., 257(7), 3118, 2011
  19. Zimbone M, Buccheri MA, Cacciato G, Sanz R, Rappazzo G, Boninelli S, Reitano R, Romano L, Privitera V, Grimaldi MG, Appl. Catal. B: Environ., 165, 487, 2015
  20. Panomsuwan G, Watthanaphanit A, Ishizaki T, Saito N, Phys. Chem. Chem. Phys., 17, 13794, 2015
  21. Korstgens V, Proller S, Buchmann T, Gonzalez DM, Song L, Yao Y, Wang W, Werhahn J, Santoro G, Roth SV, Iglev H, Kienberger R, Muller-Buschbaum P, Nanoscale, 7, 2900, 2015
  22. Ohtsu N, Kodama K, Kitagawa K, Wagatsuma K, Appl. Surf. Sci., 256(14), 4522, 2010
  23. Nolte S, Momma C, Jacobs H, Tunnermann A, Chichkov BN, Wellegehausen B, Welling H, J. Opt. Soc. Am. B, 14, 2716, 1997
  24. Kelly R, Miotello A, Appl. Surf. Sci., 96-98, 205, 1996
  25. Besner S, Kabashin AV, Meunier M, Appl. Phys. Lett., 89, 233122, 2006
  26. Yu X, Kim B, Kim YK, ACS Catal, 3, 2479, 2013
  27. Wang Y, Herron N, J. Phys. Chem., 95, 525, 1991
  28. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP, Chem. Eur. J., 8, 28, 2002
  29. Kavan L, Stoto T, Graetzel M, Fitzmaurice D, Shklover V, J. Phys. Chem., 97, 9493, 1993
  30. Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669, 1994
  31. Anpo M, Shima T, Kodama S, Kubokawa Y, J. Phys. Chem., 91, 4305, 1987
  32. Kormann C, Bahnemann DW, Hoffmann MR, J. Phys. Chem., 92, 5196, 1988
  33. Joselevich E, Willner I, J. Phys. Chem., 98(31), 7628, 1994
  34. Serpone N, Lawless D, Khairutdinov R, J. Phys. Chem., 99(45), 16646, 1995
  35. Brus L, J. Phys. Chem., 90, 2555, 1986
  36. Kasinski JJ, Gomez-Jahn LA, Faran KJ, Gracewski SM, Miller RJD, J. Chem. Phys., 90, 1253, 1989
  37. Reyes-Coronado D, Rodriguez-Gattorno G, Espinosa-Pesqueira ME, Cab C, de Coss R, Oskam G, Nanotechnology, 19, 145605, 2008
  38. Teh CY, Wu TY, Juan JC, Catal. Today, 256, 365, 2015
  39. Calloni A, Brambilla A, Berti G, Bussetti G, Canesi EV, Binda M, Petrozza A, Finazzi M, Ciccacci F, Duo L, Langmuir, 29(26), 8302, 2013