Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1786-1792, 2017
V2O5-TiO2 heterostructural semiconductors: Synthesis and photocatalytic elimination of organic contaminant
V2O5-TiO2 binary oxide catalysts were successfully prepared with different wt% V2O5 loading by solid state mechanical mixing (SSDMMix), and these nanocomposites were modified with hexadecyltrimethylammonium bromide (HTAB) and cetyl trimethylammonium bromide (CTAB) and polyvinyl alcohol (PVA) as surfactant. The resulting catalysts were characterized by X-ray diffraction (XRD), diffuse reflectance spectroscopy (DRS), scanning electron microscopy (SEM), Braun-Emmet-Teller (BET) analysis of surface area techniques. The photocatalytic activities of all samples were evaluated by degradation of 4-chlorophenol (4CP) in aqueous solution under UV irradiation. 50 wt% V2O5-TiO2 photocatalyst exhibited much higher photocatalytic activity than pure V2O5, TiO2 and P-25. The interaction between V2O5 and TiO2 affected the photocatalytic efficiency of binary oxide catalysts. In addition, CTAB and HTABassisted samples significantly enhanced the efficiency of 50V2O5-TiO2 binary oxide catalyst. The highest percentage of 4-chlorophenol degradation (100%) and highest reaction rate (1.69mg L-1 min-1) were obtained in 30 minutes with (50V2O5-TiO2)-CTAB catalyst. It is concluded that the addition of surfactant to binary oxide remarkably enhanced the photocatalytic activity by modifying the optical and electronic properties of V2O5 and TiO2.
[References]
  1. Wang RC, Ren DJ, Xia SQ, Zhang YL, Zhao JF, J. Hazard. Mater., 169(1-3), 926, 2009
  2. Hoffmann MR, Martin ST, Choi WY, Bahnemann DW, Chem. Rev., 95(1), 69, 1995
  3. Linsebigler AL, Lu GQ, Yates JT, Chem. Rev., 95(3), 735, 1995
  4. Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y, Science, 293, 269, 2001
  5. Yu JG, Yu HG, Cheng B, Zhao XJ, Yu JC, Ho WK, J. Phys. Chem., 107, 13871, 2003
  6. Kudo A, Miseki Y, Chem. Soc. Rev., 38, 253, 2009
  7. Kuwahara Y, Yamashita H, J. Mater. Chem., 21, 2407, 2011
  8. Karunakaran C, Gomathisankar P, Manikandan G, Mater. Chem. Phys., 123(2-3), 585, 2010
  9. Jiang D, Xu Y, Hou B, Wu D, Sun Y, J. Solid State Chem., 180, 1787, 2007
  10. Akbarzadeh R, Umbarkar SB, Sonawane RS, Takle S, Dongare MK, Appl. Catal. A: Gen., 374(1-2), 103, 2010
  11. Wang Y, Su YR, Qiao L, Liu LX, Su Q, Zhu CQ, Nanotechnology, 22, 22, 2011
  12. Liu JF, Wang X, Peng Q, Li YD, Adv. Mater., 17(6), 764, 2005
  13. Lee K, Wang Y, Cao GH, J. Phys. Chem. B, 109(35), 16700, 2005
  14. Fei HL, Zhou HJ, Wang JG, Sun PC, Ding DT, Chen TH, Solid State Sci., 10, 102, 2009
  15. Choi WY, Termin A, Hoffmann MR, J. Phys. Chem., 98(51), 13669, 1994
  16. Bai F, Wang DS, Huo ZY, Chen W, Liu LP, Liang X, Chen C, Wang X, Peng Q, Li YD, Angew. Chem.-Int. Edit., 46, 6650, 2007
  17. Peng Q, Dong YJ, Li YD, Angew. Chem.-Int. Edit., 42, 3027, 2003
  18. Nithya VD, Selvan RK, Sanjeeviraja C, Radheep DM, Arumugam S, Mater. Res. Bull., 46(10), 1654, 2011
  19. Bond GC, Tahir SF, Appl. Catal., 71, 1, 1991
  20. Kanna M, Wongnawa S, Mater. Chem. Phys., 110(1), 166, 2008
  21. Chen GM, Liu SH, Chen SJ, Qi ZN, Macromol. Chem. Phys., 202, 189, 2001
  22. Lathasree S, Rao AN, SivaSankar B, Sadasivam V, Rengaraj K, J. Mol. Catal. A-Chem., 223(1-2), 101, 2004
  23. Yonar T, Kestioglu K, Azbar N, Appl. Catal. B: Environ., 67(3-4), 223, 2006
  24. Wang Y, Su TR, Qiao L, Su Q, Zhu CQ, Liu XQ, Nanotechnology, 22, 225702, 2011
  25. Neppolian B, Wang Q, Yamashita H, Choi H, Appl. Catal. A: Gen., 333(2), 264, 2007
  26. Wu JC, Chung CS, Ay CL, Wang I, J. Catal., 87, 98, 1984
  27. Zhang LF, Kanki T, Sano N, Toyoda A, Sol. Energy, 70(4), 331, 2001
  28. Vione D, Minero C, Maurino V, Carlotti AE, Picatonotto T, Pelizzetti E, Appl. Catal. B: Environ., 58(1-2), 79, 2005
  29. Xu YM, Langford CH, J. Phys. Chem., 99(29), 11501, 1995
  30. Tryba B, Morawski AW, Inagaki M, Toyoda M, Appl. Catal. B: Environ., 63(3-4), 215, 2006