Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1763-1773, 2017
Efficient pressure swing adsorption for improving H2 recovery in precombustion CO2 capture
An efficient design for pressure swing adsorption (PSA) operations is introduced for CO2 capture in the pre-combustion process to improve H2 recovery and CO2 purity at a low energy consumption. The proposed PSA sequence increases the H2 recovery by introducing a purge step which uses a recycle of CO2-rich stream and a pressure equalizing step. The H2 recovery from the syngas can be increased over 98% by providing a sufficient purge flow of 48.8% of the initial syngas feeding rate. The bed size (375m3/(kmol CO2/s)) and the energy consumption for the compression of recycled CO2-rich gas (6 kW/(mol CO2/s)) are much smaller than those of other PSA processes that have a CO2 compression system to increase the product purity and recovery.
[References]
  1. Romano MC, Chiesa P, Lozza G, Int. J. Greenhouse Gas Control, 4, 785, 2010
  2. Figueroa JD, Fout T, Plasynski S, McIlvried H, Srivastava RD, Int. J. Greenhouse Gas Control, 2, 9, 2008
  3. Kanniche M, Gros-Bonnivard R, Jaud P, Valle-Marcos J, Amann J, Bouallou C, Appl. Therm. Eng., 30, 53, 2010
  4. Vora S, Brickett L, Indrikanti P, Munson R, Murphy R, Rife T, Strock J, Zaremsky C, DOE/NETL advanced carbon dioxide capture R&D program: Technology update (2013).
  5. Davidson RM, Pre-combustion capture of CO2 in IGCC plants, IEA Clean Coal Centre (2011).
  6. Smith IV OJ, Westerberg AW, Chem. Eng. Sci., 46, 2967, 1991
  7. Smith IV OJ, Westerberg AW, Chem. Eng. Sci., 47, 4213, 1992
  8. Doong SJ, Yang RT, React. Polym., 6, 7, 1987
  9. Jiang L, Fox VG, Biegler LT, AIChE J., 50(11), 2904, 2004
  10. Chaffe AL, Knowles GP, Liang Z, Zhang J, Xiao P, Webley PA, Int. J. Greenhouse Gas Control, 1, 11, 2007
  11. Zhang J, Webley PA, Xiao P, Energy Conv. Manag., 49(2), 346, 2008
  12. Kikkinides ES, Yang RT, Cho SH, Ind. Eng. Chem. Res., 32, 2714, 1993
  13. Chue KT, Kim JN, Yoo YJ, Cho SH, Yang RT, Ind. Eng. Chem. Res., 34(2), 591, 1995
  14. Reynolds SP, Ebner AD, Ritter JA, Ind. Eng. Chem. Res., 45(12), 4278, 2006
  15. Reynolds SP, Ebner AD, Ritter JA, Adsorption, 14, 399, 2008
  16. Chou CT, Chen CY, Sep. Purif. Technol., 39(1-2), 51, 2004
  17. Gomes VG, Yee KWK, Sep. Purif. Technol., 28(2), 161, 2002
  18. Hirose T, Proceedings of the 2nd China-Japan-USA Symposium on Adsorption, 123 (1991).
  19. Leavitt FW, US Patent, 5,085,674 (1992).
  20. Sivakumar SV, Rao DP, Ind. Eng. Chem. Res., 50(6), 3426, 2011
  21. Agarwal A, Biegler LT, Zitney SE, AIChE J., 56(7), 1813, 2010
  22. Schell J, Casas N, Marx D, Mazzotti M, Ind. Eng. Chem. Res., 52(24), 8311, 2013
  23. Casas N, Schell J, Pini R, Mazzotti M, Adsorption, 18, 143, 2012
  24. Park J, Lee JW, Korean J. Chem. Eng., 33(2), 438, 2016
  25. Wankat PC, Rate-controlled separations, Elsevier Applied Science (1990).
  26. Saberimoghaddam A, Nozari A, Korean J. Chem. Eng., 34(3), 822, 2017
  27. Na BK, Koo KK, Eum HM, Lee H, Song HK, Korean J. Chem. Eng., 18(2), 220, 2001