Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1748-1755, 2017
Ultrasonic-assisted leaching kinetics in aqueous FeCl3-HCl solution for the recovery of copper by hydrometallurgy from poorly soluble chalcopyrite
We studied the ultrasonic effect on the leaching of copper from poorly soluble chalcopyrite (CuFeS2) mineral in aqueous FeCl3 solution. The leaching experiment employed two methods, basic leaching and ultrasonic-assisted leaching, and was conducted under the optimized experimental conditions: a slurry density of 20 g/L in 0.1M FeCl3 reactant in a solution of 0.1M HCl, with an agitation speed of 500 rpm and in the temperature range of 50 to 99 °C. The maximum yield obtained from the optimized basic leaching was 77%, and ultrasonic-assisted leaching increased the maximum copper recovery to 87% under the same conditions of basic leaching. In terms of the leaching mechanism, the overall reaction rate of basic leaching is determined by the diffusion of both the product and ash layers based on a shrinking core model with a constant spherical particle; however, in the case of ultrasonic-assisted leaching, the leaching rate is determined by diffusion of the ash layer only by the removal of sulfur adsorbed on the surface of chalcopyrite mineral.
[References]
  1. Li Y, Kawashima N, Li J, Chandra AP, Gerson AR, Adv. Colloid Interface Sci., 197, 1, 2013
  2. Xian YJ, Wen SM, Deng JS, Liu J, Nie Q, Can. Metall. Q., 15, 133, 2012
  3. Hackl RP, Dreisinger DB, Peters E, King JA, Hydrometallurgy, 39, 25, 1995
  4. Cordoba EM, Munoz JA, Blazquez ML, Gonzalez F, Ballester A, Miner. Eng., 22(3), 229, 2009
  5. Stott MB, Watling HR, Franzmann PD, Sutton D, Miner. Eng., 13, 1117, 2000
  6. Parker A, Klauber C, Kougianos A, Watling HR, van Bronswijk W, Hydrometallurgy, 71, 265, 2003
  7. Viramontes-Gamboa G, Pena-Gomar MM, Dixon DG, Hydrometallurgy, 105, 140, 2010
  8. Carneiro MFC, Leao VA, Hydrometallurgy, 87, 73, 2007
  9. HAVLIK T, SKROBIAN M, BALAZ P, KAMMEL R, Int. J. Miner. Process., 43(1), 61, 1995
  10. HAVLIK T, KAMMEL R, Miner. Eng., 8(10), 1125, 1995
  11. Al-Harahsheh M, Kingman S, Al-Harahsheh A, Hydrometallurgy, 91, 89, 2008
  12. Bonan M, Demarthe JM, Renon H, Baratin F, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 12B, 269, 1981
  13. Skrobian M, Havlik T, Ukasik M, Hydrometallurgy, 77, 109, 2005
  14. Hirato T, Majima H, Awakura Y, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 18B, 31, 1987
  15. Aydogan S, Ucar G, Canbazoglu M, Hydrometallurgy, 81, 45, 2006
  16. Antonijevic MM, Jankovic ZD, Dimitrijevic MD, Hydrometallurgy, 71, 329, 2004
  17. Havlik T, Laubertova M, Miskufova A, Kondas J, Vranka F, Hydrometallurgy, 77, 51, 2005
  18. Guan YC, Han KN, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 23B, 979, 1997
  19. Juanqin X, Xi L, Yewei D, Weibo M, Yujie W, Jingxian L, Chinese J. Chem. Eng., 18, 948, 2010
  20. Chen SG, Sanghai Nonferrous Metals, 3, 142, 2003
  21. Kar RN, Sulka LB, Swamy KM, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 27, 351, 1996
  22. Pesic B, Zhou TL, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 23B, 13, 1992
  23. Levenspiel O, Chemical Reaction Engineering, 3rd Ed., Wiley, NewYork (2003).
  24. Schmidt LD, The Engineering of Chemical Reactions, 2nd Ed., Oxford University Press (2005).
  25. Avrami M, J. Chem. Phys., 7, 1103, 1939
  26. Dickinson CF, Heal GR, Thermochim. Acta, 340, 89, 1999
  27. Orfao JJM, Martins FG, Thermochim. Acta, 390(1-2), 195, 2002
  28. Akinlua TN, Ajayi TR, Fuel, 87, 1469, 2008
  29. O’Malley ML, Liddell KC, Metall. Mater. Trans. B-Proc. Metall. Mater. Proc. Sci., 18B, 505, 1987
  30. Maurice D, Hawk JA, Hydrometallurgy, 51, 371, 1999