Issue
Korean Journal of Chemical Engineering,
Vol.34, No.6, 1721-1727, 2017
Effects of co-ion initial concentration ratio on removal of Pb2+ from aqueous solution by modified sugarcane bagasse
A modified sugarcane bagasse (SCB) fixed bed column was used to remove Pb2+ from aqueous solution. To determine the optimal condition for Pb2+ separation, Ca2+ was chosen as the model interfering ion, and effects of Ca2+ and Pb2+ initial concentration ratio (C0 Ca : C0 Pb) on the adsorption of Pb2+ were investigated. Results showed that adsorption amount ratio of Ca2+ and Pb2+ (qe Ca : qe Pb) had a good linear relationship with C0 Ca : C0 Pb. Mass ratio of Pb2+ absorbed on the modified SCB was higher than 95% at C0 Ca : C0 Pb<1.95, illustrating that Pb2+ could be selectively removed from aqueous solution. To verify that, simulated waste water containing co-ions of K+, Na+, Cd2+ and Ca2+ was treated, and results showed that the equilibrium amount of Pb2+, K+, Na+, Cd2+ and Ca2+ adsorbed was 134.14, 0.083, 0.058, 1.28, and 1.28mg g-1, respectively, demonstrating that the modified SCB could be used to remove Pb2+ from aqueous solution in the investigated range.
[References]
  1. Reddy DHK, Harinath Y, Seshaiah K, Reddy AVR, Chem. Eng. J., 162(2), 626, 2010
  2. Hossain A, Bhattacharyya SR, Aditya G, Acs Sustain. Chem. Eng., 3, 1, 2015
  3. Hannachi Y, Rezgui A, Boubaker T, Korean J. Chem. Eng., 31(7), 1211, 2014
  4. Gupta VK, Ali I, J. Colloid Interface Sci., 271(2), 321, 2004
  5. Tarley CRT, Corazza MZ, Somera BF, Segatelli MG, J. Colloid Interface Sci., 450, 254, 2015
  6. Wu Y, Zhou Z, Yan R, Zheng J, Korean J. Chem. Eng., 31(8), 1444, 2014
  7. Chand P, Bafana A, Pakade YB, Int. Biodeterior. Biodegrad., 97, 60, 2015
  8. Matouq M, Jildeh N, Qtaishat M, J. Environ. Chem. Eng., 3, 775, 2015
  9. Park J, Won SW, Mao J, Kwak IS, Yun YS, J. Hazard. Mater., 181(1-3), 794, 2010
  10. Liang X, Xu Y, Tan X, Colloids Surf. A: Physicochem. Eng. Asp., 426, 98, 2013
  11. Varshini JS, Das D, Das N, Ecol. Eng., 81, 321, 2015
  12. Ma XM, Cui WG, Yang L, Yang YY, Chen HF, Wang K, Bioresour. Technol., 185, 70, 2015
  13. Velazquez-Jimenez LH, Pavlick A, Rangel-Mendez JR, Ind. Crop. Prod., 43, 200, 2013
  14. Martin-Lara MA, Rico ILR, Vicente IDA, Garcia GB, de Hoces MC, Desalination, 256(1-3), 58, 2010
  15. Gurgel LV, Gil LF, Water Res., 43, 4479, 2009
  16. Jilani H, Cilla A, Barbera R, Ind. Crop. Prod., 84, 131, 2016
  17. Cho DH, Kim EY, Bioprocess. Biosyst. Eng., 25, 271, 2003
  18. Tounsadi H, Khalidi A, Abdennouri M, J. Environ. Chem. Eng., 3, 822, 2015
  19. Ronda A, Calero M, Blazquez G, J. Taiwan Inst. Chem. E., 51, 109, 2015
  20. Nabizadeh KNR, Saeedi R, Mahvi AH, Iran. J. Environ. Health. Sci. Eng., 2, 159, 2005
  21. Ramalingam S, Parthiban L, Rangasamy P, Arab. J. Sci. Eng., 39, 8465, 2014
  22. Chatterjee A, Schiewer S, Water Air Soil Pollut., 225, 1854, 2014
  23. Yu JX, Xiong WL, Sun Q, Arab. J. Chem., (2016) (In Press).
  24. Yu JX, Wang LY, Chi RA, Res. Chem. Intermed., 41, 1525, 2015
  25. Al-Masri MS, Amin Y, Al-Akel B, Al-Naama T, Appl. Biochem. Biotechnol., 160(4), 976, 2010
  26. Yin R, Zhai Q, Yu L, Eur. Food Res. Technol., (2016) (In Press).
  27. Yu JX, Zhu J, Feng LY, Chi RA, J. Colloid Interface Sci., 451, 153, 2015